
Fixed-Income Toolbox
For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 1

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Income Toolbox User’s Guide

© COPYRIGHT 2003–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 2003 Online only New for Version 1.0 (Release 13)
November 2003 First printing Unchanged
June 2004 Online only Updated for Version 1.0.1 (Release 14)
August 2004 Online only Updated for Version 1.1 (Release 14+)
September 2005 Online only Updated for Version 1.1.1 (Release 14SP3)
March 2006 Online only Updated for Version 1.1.2 (Release 2006a)
September 2006 Online only Updated for Version 1.2 (Release 2006b)

Contents

Getting Started

1
What Is Fixed-Income Toolbox? . 1-2

Using Mortgage-Backed Securities 1-2
Using Debt Instruments . 1-2
Using Derivative Securities . 1-3

Mortgage-Backed Securities

2
What Are Mortgage-Backed Securities? 2-2

Using Fixed-Rate Mortgage Pool Functions 2-3
Inputs to Functions . 2-3
Generating Prepayment Vectors . 2-4
Mortgage Prepayments . 2-6
Risk Measurement . 2-8
Mortgage Pool Valuation . 2-9
Computing Option-Adjusted Spread (OAS) 2-10
Prepayments with Fewer Than 360 Months Remaining . . 2-13
Pools with Different Numbers of Coupons Remaining 2-15

Debt Instruments

3
Treasury Bills Defined . 3-2

Computing Treasury Bill Price and Yield 3-3
Treasury Bill Repurchase Agreements 3-3
Treasury Bill Yields . 3-5

v

Using Zero-Coupon Bonds . 3-7
Measuring Zero-Coupon Bond Function Quality 3-7
Pricing Treasury Notes . 3-7
Pricing Corporate Bonds . 3-9

Stepped-Coupon Bonds . 3-11
Cash Flows from Stepped-Coupon Bonds 3-11
Price and Yield of Stepped-Coupon Bonds 3-12

Term Structure Calculations . 3-14
Computing Spot and Forward Curves 3-14
Computing Spreads . 3-16

Derivative Securities

4
Pricing and Hedging . 4-2

Swap Pricing Assumptions . 4-2
Swap Pricing Example . 4-3
Portfolio Hedging . 4-8

Convertible Bond Valuation . 4-10

Treasury Bond Futures . 4-12
Theoretical Prices . 4-12
Implied Repo . 4-15
Hedge Parameters . 4-16

Functions — By Category

5
Cash Flows . 5-2

Certificates of Deposit . 5-2

vi Contents

Convertible Bonds . 5-3

Derivative Securities . 5-3

Mortgage-Backed Securities . 5-4

Option Adjusted Spread Computations 5-5

Stepped Coupon Bonds . 5-6

Treasury Bills . 5-7

Treasury Bond Futures . 5-8

Zero Coupon Instruments . 5-9

Functions — Alphabetical List

6

Examples

A
Treasury Bills . A-2

Using Zero-Coupon Bonds . A-2

Stepped-Coupon Bonds . A-2

Pricing and Hedging . A-2

Treasury Bond Futures . A-2

vii

Glossary

Index

viii Contents

1

Getting Started

What Is Fixed-Income Toolbox?
(p. 1-2)

Describes the features of
Fixed-Income Toolbox.

1 Getting Started

What Is Fixed-Income Toolbox?
The Fixed-Income Toolbox extends MATLAB® with functions for fixed-income
modeling and analysis. You can use the toolbox to determine the price,
yield, and cash flow for many types of fixed-income securities, including
mortgage-backed securities, corporate bonds, treasury bonds, municipal
bonds, certificates of deposit, and treasury bills. The Fixed-Income Toolbox
also enables you to work with derivatives, including swaps, convertible
bonds, and treasury futures. The built-in functions can be used to create
customized fixed-income models based on mortgage-backed securities and
debt instruments.

• Calculates the price and yield for generic fixed-rate mortgage pools and
balloon mortgages

• Determines the price, yield, discount rate, and cash-flow schedule for
debt instruments, including treasury bills, zero-coupon bonds, and
stepped-coupon bonds

• Calculates swap rates and sensitivities

Using Mortgage-Backed Securities
With the Fixed-Income Toolbox, you can model generic fixed-rate mortgage
pools and balloon mortgages. Tools are provided for:

• Calculating the price and yield of mortgage-backed securities using
prepayment options derived from uniform practices of the Public Securities
Association (PSA)

• Determining the mortgage-pool price or effective duration using the Option
Adjusted Spread (OAS) method

• Calculating basic risk measurements for a mortgage-pool portfolio using
convexity, duration, and average life

Using Debt Instruments
You can also use the Fixed-Income Toolbox to work with a variety of debt
instruments. You can calculate price, yield, discount rate, and break-even
discount rate for treasury bills, as well as determine price, yield, and cash-
flow schedules for corporate, treasury, and municipal bonds. The zero-coupon
functions in the Fixed-Income Toolbox facilitate the extraction of present

1-2

What Is Fixed-Income Toolbox?

value from virtually any fixed-coupon instrument for any time period. Toolbox
functions also let you calculate price, yield, and cash-flow schedules for
stepped-coupon bonds. The next coupon dates are computed automatically
from the last entered input end dates. The payment due on settlement
represents the accrued interest due on that day.

Using Derivative Securities
In addition, the Fixed-Income Toolbox provides tools based on Black’s option
functions for working with fixed-income derivatives. These tools let you
calculate swap price by computing par yields that equate the floating-rate
side of a swap to the fixed-rate side. You can set the present value of the fixed
side to the present value of the floating side without aligning and comparing
fixed and floating periods. The duration-hedging capability in the toolbox
lets you hedge a portfolio and address interest-rate risk exposure with a
swap arrangement. The Fixed-Income Toolbox lets you use binomial and
trinomial trees to value convertible bonds. The value of the convertible bond
is determined by the uncertainty of the relative stock.

1-3

1 Getting Started

1-4

2

Mortgage-Backed Securities

What Are Mortgage-Backed
Securities? (p. 2-2)

Describes mortgages and mortgage
passthrough securities.

Using Fixed-Rate Mortgage Pool
Functions (p. 2-3)

Illustrates the use of toolbox
functions to perform common
calculations involved with
mortgage-backed securities.

2 Mortgage-Backed Securities

What Are Mortgage-Backed Securities?
Mortgage-backed securities (MBS) are a type of investment that represents
ownership in a group of mortgages. Principal and interest from the individual
mortgages are used to pay principal and interest on the MBS.

Ownership in a group of mortgages is typically represented by a passthrough
certificate (PC). Most passthrough certificates are issued by the Government
National Mortgage Agency, a branch of the United States Government,
or by one of two private corporations: Fannie Mae or Freddie Mac. With
these certificates homeowners’ payments pass from the originating bank
through the issuing agency to holders of the certificates. These agencies also
frequently guarantee that the certificate holder will receive timely payment of
principal and interest from the PCs.

2-2

Using Fixed-Rate Mortgage Pool Functions

Using Fixed-Rate Mortgage Pool Functions
The Fixed-Income Toolbox supports calculations involved with generic
fixed-rate mortgage pools and balloon mortgages. Passthrough certificates
typically have embedded call options in the form of prepayment. Prepayment
is an excess payment applied to the principal of a PC. These accelerated
payments reduce the effective life of a PC.

The toolbox comes with a standard Public Securities Association (PSA)
prepayment model and can generate multiples of standard prepayment
speeds. The Public Securities Association provides a set of uniform practices
for calculating the characteristics of mortgage-backed securities when there
is an assumed prepayment function.

You can obtain more information about these uniform practices on the PSA
Web site (http://www.bondmarkets.com).

Alternatively, aside from the standard PSA implementation in this toolbox,
you can supply your own projected prepayment vectors. At this time, however,
custom prepayment functionality that incorporates pool-specific information
and interest rate forecasts are not available in this toolbox. If you plan to use
custom prepayment vectors in your calculations, you presumably already
own such a suite in MATLAB.

Inputs to Functions
Because of the generic, all-purpose nature of the toolbox passthrough
functions, users can fine tune them to conform to a particular mortgage. Most
functions require at least this set of inputs:

• Gross coupon rate

• Settlement date

• Issue (effective) date

• Maturity date

Typical optional inputs include standard prepayment speed (or customized
vector), net coupon rate (if different from gross coupon rate), and payment
delay in number of days.

2-3

http://www.bondmarkets.com

2 Mortgage-Backed Securities

All calculations are based on expected payment dates and actual cash flow to
the investor. For example, when GrossRate and CouponRate differ as inputs
to mbsdurp, the function returns a modified duration based on CouponRate.
(A notable exception is mbspassthrough, which returns interest quantities
based on the GrossRate.)

Generating Prepayment Vectors
You can generate PSA multiple prepayment vectors very quickly. To generate
prepayment vectors of 100 and 200 PSA, type

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

This function computes two prepayment values: conditional prepayment rate
(CPR) and single monthly mortality (SMM) rate. CPR is the percentage
of outstanding principal prepaid in one year. SMM is the percentage of
outstanding principal prepaid in one month. In other words, CPR is an
annual version of SMM.

Since the entire 360-by-2 array is too long to show in this document, observe
the SMM (100 and 200 PSA) plots, spaced one month apart, instead.

2-4

Using Fixed-Rate Mortgage Pool Functions

Prepayment assumptions form the basis upon which far more comprehensive
MBS calculations are based. As an illustration observe the following example,
which demonstrates the use of the function mbscfamounts to generate cash
flows and timings based on a set of standard prepayments.

Consider three mortgage pools that were sold on the issue date (which starts
unamortized). The first two pools "balloon out" in 60 months, and the third is
regularly amortized to the end. The prepayment speeds are assumed to be
100, 200, and 200 PSA, respectively.

Settle = [datenum('1-Feb-2000');
datenum('1-Feb-2000');
datenum('1-Feb-2000')];

Maturity = [datenum('1-Feb-2030')];

IssueDate = datenum('1-Feb-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;

2-5

2 Mortgage-Backed Securities

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1:2) = SMM(1:60,1:2);
PrepayMatrix(:,3) = SMM(:,2);

[CFlowAmounts, CFlowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, [], PrepayMatrix);

The fourth output argument, Factors, indicates the fraction of the balance
still outstanding at the beginning of each month. A snapshot of this argument
in the MATLAB array editor illustrates the 60-month life of the first two
of the mortgages with balloon payments and the continuation of the third
mortgage until the end (360 months).

You can readily see that mbscfamounts is the building block of most fixed rate
and balloon pool cash flows.

Mortgage Prepayments
Prepayment is beneficial to the passthrough owner when a mortgage pool
has been purchased at discount. The next example compares mortgage
yields (compounded monthly) versus the purchase clean price with constant
prepayment speed. The example illustrates that when you have purchased
a pool at a discount, prepayment generates a higher yield with decreasing
purchase price.

2-6

Using Fixed-Rate Mortgage Pool Functions

Price = [85; 90; 95];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Compute the mortgage and bond-equivalent yields.

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

0.1018
0.0918
0.0828

BEMBSYield =

0.1040
0.0936
0.0842

If for this same pool of mortgages, there was no prepayment (Speed = 0),
the yields would decline to

MYield =

0.0926
0.0861
0.0802

BEMBSYield =

0.0944
0.0877
0.0815

2-7

2 Mortgage-Backed Securities

Likewise, if the rate of prepayment doubled (Speed = 200), the yields would
increase to

MYield =

0.1124
0.0984
0.0858

BEMBSYield =

0.1151
0.1004
0.0873

For the same prepayment vector, deeper discount pools earn higher yields.
For more information, see mbsprice and mbsyield.

Risk Measurement
The Fixed-Income Toolbox provides the most basic risk measures of a pool
portfolio:

• Modified duration

• Convexity

• Average life of pool

Consider the following example, which calculates the Macaulay and modified
durations given the price of a mortgage pool.

Price = [95; 100; 105];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

2-8

Using Fixed-Rate Mortgage Pool Functions

[YearDuration, ModDuration] = mbsdurp(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

6.1341
6.3882
6.6339

ModDuration =

5.8863
6.1552
6.4159

Using Fixed-Income Toolbox functions, you can obtain modified duration and
convexity from either price or yield, as long as you specify a prepayment
vector or an assumed prepayment speed. The toolbox risk-measurement
functions (mbsdurp, mbsdury, mbsconvp, mbsconvy, and mbswal) adhere to the
guidelines listed in the PSA Uniform Practices manual.

Mortgage Pool Valuation
For accurate valuation of a mortgage pool, you must generate interest rate
paths and use them in conjunction with mortgage pool characteristics to
properly value the pool. A widely used methodology is the option-adjusted
spread (OAS). OAS measures the yield spread that is not directly attributable
to the characteristics of a fixed-income investment.

Calculating OAS
Prepayment alters the cash flows of an otherwise regularly amortizing
mortgage pool. A comprehensive option-adjusted spread calculation
typically begins with the generation of a set of paths of spot rates to predict
prepayment. A path is collection of i spot-rate paths, with corresponding
j cash flows on each of those paths.

The effect of the OAS on pool pricing is shown mathematically in the following
equation, where K represents the option-adjusted spread.

2-9

2 Mortgage-Backed Securities

Calculating Effective Duration
Alternatively, if you are more interested in the sensitivity of a mortgage pool
to interest rate changes, you should use effective duration, which is a more
appropriate measure. Effective duration is defined mathematically with the
following equation.

Calculating Market Price
The toolbox has all the components needed to calculate OAS and effective
duration if you supply prepayment vectors or assumptions. For OAS, given a
prepayment vector, you can generate a set of cash flows with mbscfamounts.
Discounting these cash flows with the reference curve and then adding OAS
produces the market price. See “Computing Option-Adjusted Spread (OAS)”
on page 2-10 for a discussion on the computation of option-adjusted spread.

Effective duration is a more difficult issue. While modified duration changes
the discounting process (by changing the yield used to discount cash flows),
effective duration needs to account for the change in cash flow because of the
change in yield. A possible solution is to recompute prices using mbsprice for
a small change in yield, in both the upwards and downwards directions. You
need to recompute the prepayment input because of this. Internally, this alters
the cash flows of the mortgage pool. Assuming that the OAS stays constant in
all yield environments, you can apply a set of discounting factors to the cash
flows in up and down yield environments to find the effective duration.

Computing Option-Adjusted Spread (OAS)
The option-adjusted spread is an amount of extra interest added above (or
below if negative) the reference zero curve. To compute the OAS, you must
provide the zero curve as an extra input. You can specify the zero curve in
any intervals and with any compounding method. (To minimize any error
due to interpolation, keep the intervals as regular and frequent as possible.)

2-10

Using Fixed-Rate Mortgage Pool Functions

You must supply a prepayment vector or specify a speed corresponding to
a standard PSA prepayment vector.

One way to compute the appropriate zero curve for an agency is to look at its
bond yields and bootstrap them from the shortest maturity onwards. You can
do this with the Financial Toolbox functions zbtprice and zbtyield.

The following example demonstrates how to calculate an appropriate zero
curve followed by computation of the pool’s OAS. This examples calculates the
OAS of a 30-year fixed rate mortgage with approximately a 28-year weighted
average maturity left, given an assumption of 0, 50, and 100 PSA prepayment
speeds.

Create curve for zerorates.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

Yields = [0.0162;
0.0163;
0.0211;
0.0328;
0.0420;
0.0501];

Since the above is Treasury data and not selected agency data, a term
structure of spread is assumed. In this example the spread declines
proportionally from a maximum of 250 basis points at the shortest maturity.

Yields = Yields + 0.025 * (1./[1:6]');

Get parameters from Bonds matrix.

Settle = datenum('20-Aug-2002');
Maturity = Bonds(:,1);
CouponRate = Bonds(:,2);
Face = Bonds(:,3);

2-11

2 Mortgage-Backed Securities

Period = Bonds(:,4);
Basis = Bonds(:,5);
EndMonthRule = Bonds(:,6);

[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...
Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ...
Face);

Use zbtprice to solve for zero rates.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, ZeroCompounding];

Use output from zbtprice to calculate the OAS.

Price = 95;
Settle = datenum('20-Aug-2002');
Maturity = datenum('2-Jan-2030');
IssueDate = datenum('2-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];

OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

OAS =

26.0502
28.6348
31.2222

This example shows that one cash flow set is being discounted and solved for
its OAS, as contrasted with the NumberOfPaths set of cash flows as shown
in “Mortgage Pool Valuation” on page 2-9. Averaging the sets of cash flows
resulting from all simulations into one average cash flow vector and solving

2-12

Using Fixed-Rate Mortgage Pool Functions

for the OAS, discounts the averaged cash flows to have a present value of
today’s (average) price.

While this example uses the mortgage pool price (mbsprice2oas) to determine
the OAS, you can also use yield to resolve it (mbsyield2oas). Also, there are
reverse OAS functions that return prices and yields given OAS (mbsoas2price
and mbsoas2yield).

The example also restates earlier examples that show discount securities
benefit from higher level of prepayment, keeping everything else unchanged.
The relation is reversed for premium securities.

Prepayments with Fewer Than 360 Months
Remaining
When fewer than 360 months remain in the pool, the applicable PSA
prepayment vector is "seasoned" by the pool’s age. (Elements in the
360-element prepayment vector that represent past payments are skipped.
For example, on a 30-year mortgage that is 10-months old, only the final
350 prepayments are applied.)

Assume, for example, that you have two 30-year loans, one new and another
10-months old. Both have the same PSA speed of 100 and prepay using the
vectors plotted below.

2-13

2 Mortgage-Backed Securities

Still within the scope of relative valuation, you could also solve for the
percentage of the standard PSA prepayment vector given the pool’s arbitrary,
user-supplied prepayment vector, such that the PSA speed gives the same
Macaulay duration as the user-supplied prepayment vector.

If you supply a custom prepayment vector, you need to account for the number
of months remaining.

Price = 101;
Settle = datenum('1-Jan-2001');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(348,1);
CouponRate = 0.075;
Delay = 14;

ImpliedSpeed = mbsprice2speed(Price, Settle, Maturity, ...
IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)

2-14

Using Fixed-Rate Mortgage Pool Functions

ImpliedSpeed =

104.2526

Examine the prepayment input. The remaining 29 years require 348 monthly
elements in the prepayment vector. Suppose then, keeping everything the
same, you change Settle to February 14, 2003.

Settle = datenum('14-Feb-2003');

You can use cpncount to count all incoming coupons received after Settle
by invoking

NumCouponsRemaining = cpncount(Settle, Maturity, 12, 1, [], ...
IssueDate)

NumCouponsRemaining =
323

The input 12 defines the monthly payment frequency, 1 defines the 30/360
basis, and IssueDate defines aging and determination-of-holder date. Thus,
you need to supply a 323-element vector to properly account for prepayment
corresponding to each monthly payment.

Pools with Different Numbers of Coupons Remaining
Suppose one pool has two remaining coupons, and the other has three.
MATLAB expects the prepayment matrix to be in the following format:

V11 V21
V12 V22
NaN V23

Vij denotes the single monthly mortality (SMM) rate for pool i during the jth
coupon period since Settle.

The use of NaN to pad the prepayment matrix is necessary because MATLAB
cannot concatenate vectors of different lengths into a matrix. Also, it can

2-15

2 Mortgage-Backed Securities

serve as an error check against any unintended operation (any MATLAB
operation that would return NaN).

For example, assume that the two-month pool has a constant SMM of
0.5% and the three-month has a constant SMM of 1% in every period. The
prepayment matrix you would create is depicted below.

Create this input in whatever manner is best for you.

Summary of Prepayment Data Vector Representation

• When you specify a PSA prepayment speed, MATLAB "seasons" the pool
according to its age.

• When you specify your own prepayment matrix, identify the maximum
number of coupons remaining using cpncount. Then supply the matrix
elements up to the point when cash flow ceases to exist.

• When different length pools must exist in the same matrix, pad the shorter
one(s) with NaN. Each column of the prepayment matrix corresponds to a
specific pool.

2-16

3

Debt Instruments

Treasury Bills Defined (p. 3-2) Defines Treasury bills and
distinguishes them from Treasury
notes and bonds.

Computing Treasury Bill Price and
Yield (p. 3-3)

Describes the functions included in
this toolbox for computing prices and
yields on Treasury bills.

Using Zero-Coupon Bonds (p. 3-7) Shows the use of zero-coupon bonds
as a method to price Treasury notes
and corporate bonds.

Stepped-Coupon Bonds (p. 3-11) Discusses cash flow, prices, and
yields on bonds whose coupons
change over time.

Term Structure Calculations
(p. 3-14)

Describes the construction of
Treasury spot, par-yield, and
forward curves and their application
in computing rate spreads.

3 Debt Instruments

Treasury Bills Defined
Treasury bills are short-term securities (issued with maturities of one year
or less) sold by the United States Treasury. Sales of these securities are
frequent, usually weekly. From time to time, the Treasury also offers longer
duration securities called Treasury notes and Treasury bonds.

A Treasury bill is a discount security. The holder of the Treasury bill does not
receive periodic interest payments. Instead, at the time of sale, a percentage
discount is applied to the face value. At maturity, the holder redeems the
bill for full face value.

The basis for Treasury bill interest calculation is actual/360. Under this
system, interest accrues on the actual number of elapsed days between
purchase and maturity, and each year contains 360 days.

3-2

Computing Treasury Bill Price and Yield

Computing Treasury Bill Price and Yield
The Fixed-Income Toolbox provides a suite of functions for computing price
and yield on Treasury bills. These functions are shown below.

Treasury Bill Functions

Function Purpose

tbilldisc2yield Convert discount rate to yield.

tbillprice Price Treasury bill given its yield or discount rate.

tbillrepo Break-even discount of repurchase agreement.

tbillyield Yield and discount of Treasury bill given its price.

tbillyield2disc Convert yield to discount rate.

tbillval01 The value of one basis point given the
characteristics of the Treasury bill, as
represented by its settlement and maturity
dates. You can relate the basis point to discount,
money-market, or bond-equivalent yield.

For all functions with yield in the computation, you can specify yield as
money-market or bond-equivalent yield. The functions all assume a face value
of $100 for each Treasury bill.

Treasury Bill Repurchase Agreements
The following example shows how to compute the break-even discount rate.
This is the rate that correctly prices the Treasury bill such that the profit
from selling the tail equals zero.

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;

BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)

3-3

3 Debt Instruments

BreakevenDiscount =

0.0167

You can check the result of this computation by examining the cash flows
in and out from the repurchase transaction. First compute the price of the
Treasury bill on the purchase date (September 26).

PriceOnPurchaseDate = tbillprice(InitialDiscount, ...
PurchaseDate, Maturity, 3)

PriceOnPurchaseDate =

99.5930

Next compute the interest due on the repurchase agreement.

RepoInterest = ...
RepoRate*PriceOnPurchaseDate*days360(PurchaseDate,SaleDate)/360

RepoInterest =

0.1237

RepoInterest for a 1.49% 30-day term repurchase agreement (30/360 basis)
is 0.1237.

Finally, compute the price of the Treasury bill on the sale date (October 26).

PriceOnSaleDate = tbillprice(BreakevenDiscount, SaleDate, ...
Maturity, 3)

PriceOnSaleDate =

99.7167

Examining the cash flows, observe that the break-even discount causes the
sum of the price on the purchase date plus the accrued 30-day interest to be
equal to the price on sale date. The next table shows the cash flows.

3-4

Computing Treasury Bill Price and Yield

Cash Flows from Repurchase Agreement

Date Cash Out Flow Cash In Flow

9/26/2002 Purchase T-bill 99.593 Repo money 99.593

10/26/2002 Payment of repo 99.593 Sell T-bill 99.7168

Repo interest 0.1238

Total 199.3098 199.3098

Treasury Bill Yields
Using the same data as before, you can examine the money-market and
bond-equivalent yields of the Treasury bill at the time of purchase and sale.
The function tbilldisc2yield can perform both computations at one time.

Maturity = '26-Dec-2002';
InitialDiscount = 0.0161;
PurchaseDate = '26-Sep-2002';
SaleDate = '26-Oct-2002';
RepoRate = 0.0149;
BreakevenDiscount = tbillrepo(RepoRate, InitialDiscount, ...
PurchaseDate, SaleDate, Maturity)

[BEYield, MMYield] = ...
tbilldisc2yield([InitialDiscount; BreakevenDiscount], ...
[PurchaseDate; SaleDate], Maturity)

BEYield =

0.01639
0.01700

MMYield =

0.01617
0.01677

3-5

3 Debt Instruments

For the short Treasury bill (fewer than 182 days to maturity), the
money-market yield is 360/365 of the bond-equivalent yield, as this example
shows.

3-6

Using Zero-Coupon Bonds

Using Zero-Coupon Bonds
A zero-coupon bond is a corporate, Treasury, or municipal debt instrument
that pays no periodic interest. Typically, the bond is redeemed at maturity
for its full face value. It will be a security issued at a discount from its face
value, or it may be a coupon bond stripped of its coupons and repackaged
as a zero-coupon bond.

The Fixed Income Toolbox provides functions for valuing zero-coupon debt
instruments. These functions supplement existing coupon bond functions
such as bndprice and bndyield that are available in the Financial Toolbox.

Measuring Zero-Coupon Bond Function Quality
Zero-coupon function quality is measured by how consistent the results
are with coupon-bearing bonds. Because the zero’s yield is essentially
bond-equivalent, comparisons with coupon-bearing bonds are possible.

In the textbook case, where time () is measured continuously and the rate ()
is continuously compounded, the value of a zero bond is simply the principal
multiplied by . In reality, the rate quoted is very seldom continuous and
the basis can be variable, requiring a more consistent approach to meet the
stricter demands of accurate pricing.

The following two examples

• “Pricing Treasury Notes” on page 3-7

• “Pricing Corporate Bonds” on page 3-9

show how the zero functions are consistent with supported coupon bond
functions.

Pricing Treasury Notes
A Treasury note can be considered to be a package of zeros. The toolbox
functions that price zeros require a coupon bond equivalent yield. That
yield can originate from any type of coupon paying bond, with any periodic
payment, or any accrual basis. The next example shows the use of the toolbox

3-7

3 Debt Instruments

to price a Treasury note and compares the calculated price with the actual
price quotation for that day.

Settle = datenum('02-03-2003');
MaturityCpn = datenum('05-15-2009');
Period = 2;
Basis = 0;

% Quoted yield.
QYield = 0.03342;

% Quoted price.
QPriceACT = 112.127;

CouponRate = 0.055;

Extract the cash flow and compute price from the sum of zeros discounted.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...
Period, Basis);
MaturityofZeros = CDates;

Compute the price of the coupon bond identically as a collection of zeros by
multiplying the discount factors to the corresponding cash flows.

PriceofZeros = CFlows * zeroprice(QYield, Settle, ...
MaturityofZeros, Period, Basis)/100;

The following table shows the intermediate calculations.

Cash Flows Discount Factors
Discounted Cash
Flows

-1.2155 1.0000 -1.2155

2.7500 0.9908 2.7246

2.7500 0.9745 2.6799

2.7500 0.9585 2.6359

2.7500 0.9427 2.5925

3-8

Using Zero-Coupon Bonds

Cash Flows Discount Factors
Discounted Cash
Flows

2.7500 0.9272 2.5499

2.7500 0.9120 2.5080

2.7500 0.8970 2.4668

2.7500 0.8823 2.4263

2.7500 0.8678 2.3864

2.7500 0.8535 2.3472

2.7500 0.8395 2.3086

2.7500 0.8257 2.2706

102.7500 0.8121 83.4451

Total 112.1263

Compare the quoted price and the calculated price based on zeros.

[QPriceACT PriceofZeros]

ans =

112.1270 112.1263

This example shows that zeroprice can satisfactorily price a Treasury note,
a semiannual actual/actual basis bond, as if it were a composed of a series
of zero coupon bonds.

Pricing Corporate Bonds
You can similarly price a corporate bond, for which there is no corresponding
zero coupon bond, as opposed to a Treasury note, for which corresponding
zeros exist. You can create a synthetic zero-coupon bond and arrive at the
quoted coupon-bond price when you later sum the zeros.

Settle = datenum('02-05-2003');
MaturityCpn = datenum('01-14-2009');
Period = 2;

3-9

3 Debt Instruments

Basis = 1;
% Quoted yield.
QYield = 0.05974;
% Quoted price.
QPrice30 = 99.382;
CouponRate = 0.05850;

Extract cash flow and compute price from the sum of zeros.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ...
Period, Basis);

Maturity = CDates;

Compute the price of the coupon bond identically as a collection of zeros by
multiplying the discount factors to the corresponding cash flows.

Price30 = CFlows * zeroprice(QYield, Settle, Maturity, Period, ...
Basis)/100;

Compare quoted price and calculated price based on zeros.

[QPrice30 Price30]

ans =

99.3820 99.3828

As a test of fidelity, intentionally giving the wrong basis, say actual/actual
(Basis = 0) instead of 30/360, gives a price of 99.3972. Such a systematic
error, if recurring in a more complex pricing routine, quickly adds up to large
inaccuracies.

In summary, the zero functions in MATLAB facilitate extraction of present
value from virtually any fixed-coupon instrument, up to any period in time.

3-10

Stepped-Coupon Bonds

Stepped-Coupon Bonds
A stepped-coupon bond has a fixed schedule of changing coupon amounts.
Like fixed coupon bonds, stepped-coupon bonds could have different periodic
payments and accrual bases.

The functions stepcpnprice and stepcpnyield compute prices and yields of
such bonds. An accompanying function stepcpncfamounts produces the cash
flow schedules pertaining to these bonds.

Cash Flows from Stepped-Coupon Bonds
Consider a bond that has a schedule of two coupons. Suppose the bond
starts out with a 2% coupon that steps up to 4% in two years and onwards
to maturity. Assume that the issue and settlement dates are both March 15,
2003. The bond has a five-year maturity. Use stepcpncfamounts to generate
the cash flow schedule and times.

Settle = datenum('15-Mar-2003');
Maturity = datenum('15-Mar-2008');
ConvDates = [datenum('15-Mar-2005')];
CouponRates = [0.02, 0.04];

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...
ConvDates, CouponRates)

Notably, ConvDates has one less element than CouponRates because MATLAB
assumes that the first element of CouponRates indicates the coupon schedule
between Settle (March 15, 2003) and the first element of ConvDates (March
15, 2005), shown diagrammatically below.

Pay 2% from March
15, 2003

Pay 4% from March
15, 2003

Effective 2% on March
15, 2003

Effective 4% on March
15, 2005

3-11

3 Debt Instruments

CouponDates Semiannual Coupon Payment

15-Mar-03 0

15-Sep-03 1

15-Mar-04 1

15-Sep-04 1

15-Mar-05 1

15-Sep-05 2

15-Mar-06 2

15-Sep-06 2

15-Mar-07 2

15-Sep-07 2

15-Mar-08 102

The payment on March 15, 2005 is still a 2% coupon. Payment of the 4%
coupon starts with the next payment, September 15, 2005. March 15, 2005
is the end of first coupon schedule, not to be confused with the beginning of
the second.

In summary, MATLAB takes user input as the end dates of coupon schedules
and computes the next coupon dates automatically.

The payment due on settlement (zero in this case) represents the accrued
interest due on that day. It is negative if such amount is nonzero. Comparison
with cfamounts in the Financial Toolbox shows that the two functions operate
identically.

Price and Yield of Stepped-Coupon Bonds
The toolbox provides two basic analytical functions to compute price and
yield for stepped-coupon bonds. Using the above bond as an example, you can
compute the price when the yield is known.

You can estimate the yield to maturity as a number-of-year weighted average
of coupon rates. For this bond the estimated yield is

3-12

Stepped-Coupon Bonds

or 3.33%. While definitely not exact (due to nonlinear relation of price and
yield), this estimate suggests close to par valuation and serves as a quick
first check on the function.

Yield = 0.0333;

[Price, AccruedInterest] = stepcpnprice(Yield, Settle, ...
Maturity, ConvDates, CouponRates)

The price returned is 99.2237 (per $100 notional), and the accrued interest is
zero, consistent with our earlier assertions.

To validate that there is consistency among the stepped-coupon functions,
you can use the above price and see if indeed it implies a 3.33% yield by
using stepcpnyield.

YTM = stepcpnyield(Price, Settle, Maturity, ConvDates, ...
CouponRates)

YTM =

0.0333

3-13

3 Debt Instruments

Term Structure Calculations
So far we have avoided a more formal definition of "yield" and its application.
In many situations when cash flow is available, discounting factors to the
cash flows may not be immediately apparent. In other cases, what is relevant
is often a spread, the difference between curves (also known as the term
structure of spread).

All these calculations require one main ingredient, the Treasury spot,
par-yield, or forward curve. Typically, the generation of these curves starts
with a series of on-the-run and selected off-the-run issues as inputs.

MATLAB uses these bonds to find spot rates one at a time, from the shortest
maturity onwards, using bootstrap techniques. All cash flows are used to
construct the spot curve, and rates between maturities (for these coupons) are
interpolated linearly.

Computing Spot and Forward Curves
For an illustration of how this works, observe the use of zbtyield (or
equivalently zbtprice) on a portfolio of six Treasury bills and bonds.

Bills Maturity Date Current Yield

3 month 4/17/03 1.15

6 month 7/17/03 1.18

Notes/Bonds Coupon Maturity Date Current Yield

2 year 1.750 12/31/04 1.68

5 year 3.000 11/15/07 2.97

10 year 4.000 11/15/12 4.01

30 year 5.375 2/15/31 4.92

You can specify prices or yields to the bonds above to infer the spot curve. The
function zbtyield accepts yields (bond-equivalent yield, to be exact).

3-14

Term Structure Calculations

To proceed, first assemble the above table into a variable called Bonds. The
first column contains maturities, the second contains coupons, and the third
contains notionals or face values of the bonds. (Note that bills have zero
coupons.)

Bonds = [datenum('04/17/2003') 0 100;
datenum('07/17/2003') 0 100;
datenum('12/31/2004') 0.0175 100;
datenum('11/15/2007') 0.03 100;
datenum('11/15/2012') 0.04 100;
datenum('02/15/2031') 0.05375 100];

Then specify the corresponding yields.

Yields = [0.0115;
0.0118;
0.0168;
0.0297;
0.0401;
0.0492];

You are now ready to compute the spot curve for each of these six maturities.
The spot curve is based upon a settlement date of January 17, 2003.

Settle = datenum('17-Jan-2003');
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle)

This gets you the Treasury spot curve for the day.

You can compute the forward curve from this spot curve with zero2fwd.

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, ...
Settle)

Here the notion of forward rates refers to rates between the maturity dates
shown above, not to a certain period (forward three-month rates, for example).

3-15

3 Debt Instruments

Computing Spreads
Calculating the spread between specific, fixed forward periods (such as the
Treasury-Eurodollar spread) requires an extra step. Interpolate the zero
rates (or zero prices, instead) for the corresponding maturities on the interval
dates. Then use the interpolated zero rates to deduce the forward rates, and
thus the spread of Eurodollar forward curve segments versus the relevant
forward segments from Treasury bills.

Additionally, the variety of curve functions (including zero2fwd) helps to
standardize such calculations. For instance, by making both rates quoted
with quarterly compounding and on an actual/360 basis, the resulting spread
structure is fully comparable. This avoids the small inconsistency that occurs
when directly comparing the bond-equivalent yield of a Treasury bill to the
quarterly forward rates implied by Eurodollar futures.

3-16

Term Structure Calculations

Noise in Curve Computations
When introducing more bonds in constructing curves, noise may become a
factor and may need some "smoothing" (with splines, for example). This will
help obtain a smoother forward curve.

The following spot and forward curves are constructed from 67 Treasury
bonds. The fitted and bootstrapped spot curve (bottom right figure) displays
comparable stability. The forward curve (upper left figure) contains significant
noise and shows an improbable forward rate structure. The noise is not
necessarily bad; it could uncover trading opportunities for a relative-value
approach. Yet, a more balanced approach is certainly desired when the
bootstrapped forward curve oscillates this much and contains a negative rate
as large as -10% (not shown in the plot because it is outside the limits).

3-17

3 Debt Instruments

This example uses termfit, a demonstration function from the Financial
Toolbox that also requires the use of the Spline Toolbox.

3-18

4

Derivative Securities

Pricing and Hedging (p. 4-2) Describes the pricing of
Eurodollar-based swaps and
portfolio hedging.

Convertible Bond Valuation (p. 4-10) Illustrates a binomial or trinomial
tree approach to value convertible
bonds.

Treasury Bond Futures (p. 4-12) Describes the computation of
Treasury futures conversion factors
and theoretical Treasury futures
prices.

4 Derivative Securities

Pricing and Hedging
The Fixed-Income Toolbox contains functions that perform swap pricing and
portfolio hedging.

Swap Pricing Assumptions
The Fixed-Income Toolbox contains the function liborfloat2fixed, which
computes a fixed-rate par yield that equates the floating-rate side of a swap to
the fixed-rate side. The solver sets the present value of the fixed side to the
present value of the floating side without having to line up and compare fixed
and floating periods.

Assumptions on Floating-Rate Input

• Rates are quarterly, for example, that of Eurodollar futures.

• Effective date is the first third Wednesday after the settlement date.

• All delivery dates are spaced three months apart.

• All periods start on the third Wednesday of delivery months.

• All periods end on the same dates of delivery months, three months after
the start dates.

• Accrual basis of floating rates is actual/360.

• Applicable forward rates are estimated by interpolation in months when
forward-rate data is not available.

Assumptions on Fixed-Rate Output

• Design allows you to create a bond of any coupon, basis, or frequency, based
upon the floating-rate input.

• The start date is a valuation date, that is, a date when an agreement to
enter into a contract by the settlement date is made.

• Settlement can be on or after the start date. If it is after, a forward
fixed-rate contract results.

4-2

Pricing and Hedging

• Effective date is assumed to be the first third Wednesday after settlement,
the same date as that of the floating rate.

• The end date of the bond is a designated number of years away, on the same
day and month as the effective date.

• Coupon payments occur on anniversary dates. The frequency is determined
by the period of the bond.

• Fixed rates are not interpolated. A fixed-rate bond of the same present
value as that of the floating-rate payments is created.

Swap Pricing Example
This example demonstrates the use of the functions in computing the
fixed rate applicable to a series of 2-, 5-, and 10-year swaps based on
Eurodollar market data. According to the Chicago Mercantile Exchange
(http://www.cme.com), Eurodollar data on Friday, October 11, 2002, was as
shown in the following table.

Note This example illustrates swap calculations in MATLAB. Timing of the
data set used was not rigorously examined and was assumed to be the proxy
for the swap rate reported on October 11, 2002.

Eurodollar Data on Friday, October 11, 2002

Month Year Settle

10 2002 98.21

11 2002 98.26

12 2002 98.3

1 2003 98.3

2 2003 98.31

3 2003 98.275

6 2003 98.12

9 2003 97.87

12 2003 97.575

4-3

http://www.cme.com

4 Derivative Securities

Eurodollar Data on Friday, October 11, 2002 (Continued)

Month Year Settle

3 2004 97.26

6 2004 96.98

9 2004 96.745

12 2004 96.515

3 2005 96.33

6 2005 96.135

9 2005 95.955

12 2005 95.78

3 2006 95.63

6 2006 95.465

9 2006 95.315

12 2006 95.16

3 2007 95.025

6 2007 94.88

9 2007 94.74

12 2007 94.595

3 2008 94.48

6 2008 94.375

9 2008 94.28

12 2008 94.185

3 2009 94.1

6 2009 94.005

9 2009 93.925

12 2009 93.865

3 2010 93.82

4-4

Pricing and Hedging

Eurodollar Data on Friday, October 11, 2002 (Continued)

Month Year Settle

6 2010 93.755

9 2010 93.7

12 2010 93.645

3 2011 93.61

6 2011 93.56

9 2011 93.515

12 2011 93.47

3 2012 93.445

6 2012 93.41

9 2012 93.39

Using this data, you can compute 1-, 2-, 3-, 4-, 5-, 7-, and 10-year swap rates
with the toolbox function liborfloat2fixed. The function requires you
to input only Eurodollar data, the settlement date, and tenor of the swap.
MATLAB then performs the required computations.

To illustrate how this function works, first load the data contained in the
supplied Excel worksheet EDdata.xls.

[EDRawData, textdata] = xlsread('EDdata.xls');

Extract the month from the first column and the year from the second column.
The rate used as proxy is the arithmetic average of rates on opening and
closing.

Month = EDRawData(:,1);
Year = EDRawData(:,2);
IMMData = (EDRawData(:,4)+EDRawData(:,6))/2;
EDFutData = [Month, Year, IMMData];

Next, input the current date.

Settle = datenum('11-Oct-2002');

4-5

4 Derivative Securities

To compute for the two-year swap rate, set the tenor to 2.

Tenor = 2;

Finally, compute the swap rate with liborfloat2fixed.

[FixedSpec, ForwardDates, ForwardRates] = ...
liborfloat2fixed(EDFutData, Settle, Tenor)

MATLAB returns a par-swap rate of 2.23% using the default setting
(quarterly compounding and 30/360 accrual), and forward dates and
rates data (quarterly compounded), comparable to 2.17% of Friday’s
average broker data in Table H15 of Federal Reserve Statistical Release
(http://www.federalreserve.gov/releases/h15/update/).

FixedSpec =

Coupon: 0.0223
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

731505
731596
731687
731778
731869
731967
732058
732149

ForwardRates =

0.0178
0.0168
0.0171

4-6

http://www.federalreserve.gov/releases/h15/update/

Pricing and Hedging

0.0189
0.0216
0.0250
0.0280
0.0306

In the FixedSpec output, note that the swap rate actually goes forward from
the third Wednesday of October 2002 (October 16, 2002), five days after the
original Settle input (October 11, 2002). This, however, is still the best proxy
for the swap rate on Settle, as the assumption merely starts the swap’s
effective period and does not affect its valuation method or its length.

The correction suggested by Hull and White improves the result by turning
on convexity adjustment as part of the input to liborfloat2fixed. (See
Hull, J., Options, Futures, and Other Derivatives, 4th Edition, Prentice-Hall,
2000.) For a long swap, e.g., five years or more, this correction could prove
to be substantial.

The adjustment requires additional parameters:

• StartDate, which you make the same as Settle (the default) by providing
an empty matrix [] as input.

• ConvexAdj to tell liborfloat2fixed to perform the adjustment.

• RateParam, which provides the parameters a and S as input to the
Hull-White short rate process.

• Optional parameters InArrears and Sigma, for which you can use empty
matrices [] to accept the MATLAB defaults.

• FixedCompound, with which you can facilitate comparison with values cited
in Table H15 of Federal Reserve Statistical Release by turning the default
quarterly compounding into semiannual compounding, with the (default)
basis of 30/360.

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;
[FixedSpec, ForwardDaates, ForwardRates] = ...

4-7

4 Derivative Securities

liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, ...
Interpolation, ConvexAdj, RateParam, [], [], FixedCompound)

This returns 2.21% as the two-year swap rate, quite close to the reported
swap rate for that date.

Analogously, the following table summarizes the solutions for 1-, 3-, 5-, 7-, and
10-year swap rates (convexity-adjusted and unadjusted).

Calculated and Market Average Data of Swap Rates on Friday,
October 11, 2002

Swap
Length
(years) Unadjusted Adjusted Table H15

Adjusted
Error
(basis
points)

1 1.80% 1.79% 1.80% -1

2 2.24% 2.21% 2.22% -1

3 2.70% 2.66% 2.66% 0

4 3.12% 3.03% 3.04% -1

5 3.50% 3.37% 3.36% +1

7 4.16% 3.92% 3.89% +3

10 4.87% 4.42% 4.39% +3

Portfolio Hedging
You can use these results further, such as for hedging a portfolio. The
liborduration function provides a duration-hedging capability. You can
isolate assets (or liabilities) from interest-rate risk exposure with a swap
arrangement.

Suppose you own a bond with these characteristics:

• $100 million face value

• 7% coupon paid semiannually

4-8

Pricing and Hedging

• 5% yield to maturity

• Settlement on October 11, 2002

• Maturity on January 15, 2010

• Interest accruing on an actual/365 basis

Use of the bnddury function from the Financial Toolbox shows a modified
duration of 5.6806 years.

To immunize this asset, you can enter into a pay-fixed swap,
specifically a swap in the amount of notional principal (Ns) such that
Ns*SwapDuration + $100M*5.6806 = 0 (or Ns = -100*5.6806/SwapDuration).

Suppose again, you choose to employ a 5-, 7-, or 10-year swap (3.37%, 3.92%,
and 4.42% from the previous table) as your hedging tool.

SwapFixRate = [0.0337; 0.0392; 0.0442];
Tenor = [5; 7; 10];
Settle = '11-Oct-2002';
PayFixDuration = liborduration(SwapFixRate, Tenor, Settle)

This gives a duration of -3.6835, -4.7307, and -6.0661 years for 5-, 7-, and
10-year swaps. The corresponding notional amount is computed by

Ns = -100*5.6806./PayFixDuration

Ns =

154.2163
120.0786
93.6443

The notional amount entered in pay-fixed side of the swap instantaneously
immunizes the portfolio.

4-9

4 Derivative Securities

Convertible Bond Valuation
A convertible bond (CB) is a debt instrument that can be converted into a
predetermined amount of a company’s equity at certain times prior to the
bond’s maturity.

The Fixed-Income Toolbox uses a binomial and trinomial tree approach
(cbprice) to value convertible bonds. The value of a convertible bond is
determined by the uncertainty of the related stock. Once the stock evolution
is modeled, backwards discounting is computed.

The last column of such trees provides the data to decide which is more
profitable: the debt notional (plus interest, if any) or the equivalent number of
shares per the notional.

Where debt prevails, the toolbox discounts backward with the risk-free rate
plus the spread reflecting the credit risk of issuer. Where stock prevails, the
toolbox discounts with the risk free rate. The intrinsic value of a convertible
bond is the sum of the (probability-adjusted) debt and stock portions from
the last node. This is compared with current stock price, to see if voluntary
or forced conversion may take place. Otherwise, its value is the intrinsic
value. From here, the same discounting process is repeated after adjusting
debt portion to be equal to zero if any conversion takes place. Dividends and
coupons are handled discretely, at the date they occur.

The approach is equivalent to solving a one-dimensional partial differential
equation such as one described by Tsiveriotis and Fernandes. (See Tsiveriotis,
K. and C. Fernandes (1998), “Valuing Convertible Bonds with Credit Risk,”
The Journal of Fixed Income, 8 (3), 95 - 102.) Using the same example of bond
specifications that they use (4% annual coupon, payable twice a year, callable
after two years at 110, and redeemable at par in five years), the toolbox gives
results similar to theirs.

4-10

Convertible Bond Valuation

The figure on the left shows the bond "floor" of the convertible (a 5% yield,
given a 4% coupon at about 97% par) when share prices are very low.

The change of curvature located at the end of the second year is due to the
activation of the embedded (soft) call feature (visible on the surface plot in
the right figure).

Finally, there is the flat section when time is nearing expiration and share
prices are high, indicating a delta of unity, a characteristic of in-the-money
equity options embedded in a bond.

4-11

4 Derivative Securities

Treasury Bond Futures
The Fixed-Income Toolbox also provides new functions that compute Treasury
futures conversion factors and theoretical Treasury futures prices. Topics
explained in this section include

• “Theoretical Prices” on page 4-12

• “Implied Repo” on page 4-15

• “Hedge Parameters” on page 4-16

Theoretical Prices
This example shows how you can provide an input of eligible bonds and obtain
its conversion factor to a 6% coupon rate (or against any other desired coupon
rate). The example assumes no knowledge of the repo rate and instead uses
the spot curve as the funding rate (tfutbyprice and tfutbyyield).

RefDate = [datenum('1-Dec-2002');
datenum('1-Mar-2003');
datenum('1-Jun-2003');
datenum('1-Sep-2003');
datenum('1-Dec-2003');
datenum('1-Sep-2003');
datenum('1-Dec-2002');
datenum('1-Jun-2003')];

Maturity = [datenum('15-Nov-2012');
datenum('15-Aug-2012');
datenum('15-Feb-2012');
datenum('15-Feb-2011');
datenum('15-Aug-2011');
datenum('15-Aug-2010');
datenum('15-Aug-2009');
datenum('15-Feb-2010')];

CouponRate = [0.04; 0.04375; 0.04875; 0.05;
0.05; 0.0575; 0.06; 0.065];

CF = convfactor(RefDate, Maturity, CouponRate)

4-12

Treasury Bond Futures

CF =

0.8539
0.8858
0.9259
0.9418
0.9403
0.9862
1.0000
1.0266

The results can be checked against the Chicago Board of Trade
(http://www.cbot.com) 10-year futures contract table.

Coupon
Issue
Date Maturity Date 6% Conversion Factors

Dec-02 Mar-03 Jun-03 Sep-03 Dec-03 Mar-04

4.00 11/15/02 11/15/12 0.8539 0.8568 0.8595 0.8625 0.8653 0.8683

4 3/8 08/15/02 08/15/12 0.8836 0.8858 0.8883 0.8905 0.893 0.8954

4 7/8 02/15/02 02/15/12 0.9226 0.9242 0.9259 0.9275 0.9293 0.931

5 02/15/01 02/15/11 0.9372 0.9386 0.9403 0.9418 0.9435 0.9451

5 08/15/01 08/15/11 0.9342 0.9356 0.9372 0.9386 0.9403 0.9418

5 1/2 05/17/99 05/15/09 --- --- --- --- --- ---

5 3/4 08/15/00 08/15/10 0.9851 0.9854 0.9859 0.9862 0.9867 ---

6 08/16/99 08/15/09 1 --- --- --- --- ---

6 1/2 02/15/00 02/15/10 1.0282 1.0273 1.0266 --- --- ---

This computation can be incorporated into other functions that use conversion
factors, such as routines to find the cheapest-to-deliver bonds. This is also
equivalent to calculating the theoretical price of a particular set of bond
futures prices.

4-13

http://www.cbot.com

4 Derivative Securities

A Treasury spot curve is necessary to discount the issue properly. MATLAB
takes into account the actual/actual accrual basis and any intermittent
coupons between the settlement and delivery dates. You can generate the spot
curve using any set of Treasury bonds as long as the bonds cover the entire
life of the futures in question.

% Computing the reference spot curve.
Bonds = [datenum('02/13/2003'), 0;

datenum('05/15/2003'), 0;
datenum('10/31/2004'), 0.02125;
datenum('11/15/2007'), 0.03;
datenum('11/15/2012'), 0.04;
datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93] / 100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

% Computing theoretical futures T-bonds price.
SpotCurve = [CurveDates, ZeroRates];
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
CF = convfactor(RefDate, Maturity, CouponRate);
Price = [114.416; 113.171];
Interpolation = 1;

QtdFutPrice = tfutbyprice(SpotCurve, Price, Settle, ...
MatFut, CF, CouponRate, Maturity, Interpolation)

QtdFutPrice =

113.8129
112.4986

4-14

Treasury Bond Futures

These quoted prices for December 2002 and March 2003 are comparable with
futures prices of 113.93 and 112.68 traded that same hour at the Chicago
Board of Trade. Without a live data feed, the data timings are asynchronous,
but the results compare favorably for illustration purposes. These methods
are well documented (such as in Hull 2000) and require some assumptions
about the intended delivery date. Because of the short-term maturities on
most bond futures, no convexity adjustment is usually needed.

When you know the repo rate, you can calculate theoretical prices with
tfutpricebyrepo or tfutyieldbyrepo. Effectively, the known repo rate
substitutes for the segment of the spot curve between the settlement and
delivery dates.

Implied Repo
Alternatively, you can calculate the cheapest-to-deliver (CTD) bonds by
comparing the repo rates implied by bond current and future prices. A
higher-cost bond, obviously, is not a candidate for the CTD bond, and vice
versa.

Within a low-yield environment, you would like to compare implied repos on
two bonds on the extremes of a deliverable three-month contract for 10-year
Treasury bonds. You expect that the CTD bond has a higher coupon and
shorter maturity, and that this bond implies lower funding cost.

For example, two bonds on the extremes are a 6.5% coupon maturing February
15, 2010, and a 3.875% coupon maturing February 15, 2013. You would expect
the 6.5% to be significantly cheaper to deliver as implied by its lower funding
rate. The price of the 6.5% is 118.439, and price of the 3.875% is 99.601.

Quoted futures price for June 2003 is 113.9219 (113-295). Today is March 27,
2003, and you intend to deliver on June 27, 2003 (92 days repo). There are no
coupons to reinvest during this period.

The code that provides this information to the toolbox tfutimprepo function is

ReinvestData = [0.025 3];
Price = [118.300;

99.601];
QtdFutPrice = [113.9219;

4-15

4 Derivative Securities

113.9219];
Settle = datenum('03/27/2003');
MatFut = [datenum('27-Jun-2003');

datenum('27-Jun-2003')];
CF = [1.0266;

0.8478];
CouponRate = [0.06500;

0.03875];
Maturity = [datenum('15-Feb-2010');

datenum('15-Feb-2013')];
ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...
Settle, MatFut, CF, CouponRate, Maturity)

ImpliedRepo =

0.0100
-0.0795

This result confirms that the CTD bond is indeed the 6.5% February 2010
bond, as it has the higher implied repo (ignoring transaction cost) before
arbitrage can occur. The implied repo in MATLAB is always returned on
an actual/360 accrual basis.

Remember that this data is likely to be asynchronous and is useful for
illustration purpose only.

Hedge Parameters
Treasury futures hedge parameters are frequently measured with DV01, the
dollar value when there is a one-basis-point shift. This is easily calculated
by computing the duration of the underlying bond for the contract (the CTD
bond), dividing it by its conversion factor, and multiplying it by its cash price.
Use bnddurp and bnddury from the Financial Toolbox to compute modified
durations of fixed-coupon bonds. Again, the facility provided by the Treasury
bond futures functions easily leverages such tasks and lets you focus on more
qualitative assessment of your routines.

4-16

5

Functions — By Category

Cash Flows (p. 5-2) Work with cash flow for bond
portfolios

Certificates of Deposit (p. 5-2) Work with certificate of deposit

Convertible Bonds (p. 5-3) Work with convertible bonds

Derivative Securities (p. 5-3) Work with derivative securities

Mortgage-Backed Securities (p. 5-4) Work with mortgage-backed
securities

Option Adjusted Spread
Computations (p. 5-5)

Work with option adjusted spread
computations

Stepped Coupon Bonds (p. 5-6) Work with stepped coupon bonds

Treasury Bills (p. 5-7) Work with treasury bills

Treasury Bond Futures (p. 5-8) Work with treasury bond futures

Zero Coupon Instruments (p. 5-9) Work with zero coupon instruments

5 Functions — By Category

Cash Flows
cfamounts Cash flow and time mapping for

bond portfolio

Certificates of Deposit
cdai Accrued interest on certificate of

deposit (CD)

cdprice Price certificate of deposit (CD)

cdyield Yield on certificate of deposit (CD)

5-2

Convertible Bonds

Convertible Bonds
cbprice Price convertible bond

Derivative Securities
bkcall Price European call option on bonds

using Black’s model

bkcaplet Price interest rate caplet using
Black’s model

bkfloorlet Price interest rate floorlet using
Black’s model

bkput Price European put option on bonds
using Black’s model

liborduration Duration of LIBOR-based interest
rate swap

liborfloat2fixed Compute par fixed-rate of swap
given 3-month LIBOR data

liborprice Price swap given swap rate

5-3

5 Functions — By Category

Mortgage-Backed Securities
mbscfamounts Cash flow and time mapping for

mortgage pool

mbsconvp Convexity of mortgage pool given
price

mbsconvy Convexity of mortgage pool given
yield

mbsdurp Duration of mortgage pool given
price

mbsdury Duration of mortgage pool given
yield

mbsnoprepay End-of-month mortgage cash flows
and balances without prepayment

mbspassthrough Mortgage pool cash flows and
balances with prepayment

mbsprice Mortgage-backed security price
given yield

mbsprice2speed Implied PSA prepayment speeds
given price

mbswal Weighted average life of mortgage
pool

mbsyield Mortgage-backed security yield
given price

mbsyield2speed Implied PSA prepayment speeds
given yield

psaspeed2default Benchmark default

psaspeed2rate Single monthly mortality rate given
PSA speed

5-4

Option Adjusted Spread Computations

Option Adjusted Spread Computations
mbsoas2price Price given option-adjusted spread

mbsoas2yield Yield given option-adjusted spread

mbsprice2oas Option-adjusted spread given price

mbsyield2oas Option-adjusted spread given yield

5-5

5 Functions — By Category

Stepped Coupon Bonds
stepcpncfamounts Cash flow amounts and times for

bonds and stepped coupons

stepcpnprice Price bond with stepped coupons

stepcpnyield Yield to maturity of bond with
stepped coupons

5-6

Treasury Bills

Treasury Bills
tbilldisc2yield Convert Treasury bill discount to

equivalent yield

tbillprice Price Treasury bill

tbillrepo Break-even discount of repurchase
agreement

tbillval01 Value of one basis point

tbillyield Yield on Treasury bill

tbillyield2disc Convert Treasury bill yield to
equivalent discount

5-7

5 Functions — By Category

Treasury Bond Futures
convfactor Treasury bond conversion factors

tfutbyprice Future prices of Treasury bonds
given spot price

tfutbyyield Future prices of Treasury bonds
given current yield

tfutimprepo Implied simple annual repurchase
rate to prevent arbitrage

tfutpricebyrepo Theoretical futures bond price

tfutyieldbyrepo Theoretical futures bond yield

5-8

Zero Coupon Instruments

Zero Coupon Instruments
zeroprice Price zero-coupon instruments given

yield

zeroyield Yield of zero-coupon instruments
given price

5-9

5 Functions — By Category

5-10

6

Functions — Alphabetical
List

bkcall

Purpose Price European call option on bonds using Black’s model

Syntax CallPrice = bkcall(Strike, ZeroData, Sigma, BondData, Settle,
Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention)

Arguments Strike Scalar or number of options (NOPT) by 1 vector
of strike prices.

ZeroData Two-column (optionally three-column) matrix
containing zero (spot) rate information used to
discount future cash flows.
First column: Serial maturity date associated
with the zero rate in the second column.
Second column: Annualized zero rates, in
decimal form, appropriate for discounting
cash flows occurring on the date specified
in the first column. All dates must occur
after Settle (dates must correspond to
future investment horizons) and must be in
ascending order.
Third column: (optional): Annual
compounding frequency. Values are
1 (annual), 2 (semiannual, default), 3 (three
times per year), 4 (quarterly), 6 (bimonthly),
12 (monthly), and -1 (continuous).

Sigma Scalar or NOPT- by-1 vector of annualized price
volatilities required by Black’s model.

6-2

bkcall

BondData Row vector with three (optionally four)
columns or NOPT-by-3 (optionally NOPT-by-4)
matrix specifying characteristics of underlying
bonds in the form:
[CleanPrice CouponRate Maturity Face]
CleanPrice is the price excluding accrued
interest.
CouponRate is the decimal coupon rate.
Maturity is the bond maturity date in serial
date number format.
Face is the face value of the bond. If
unspecified, the face value is assumed to be
100.

Settle Settlement date of the options. May be a
serial date number or date string. Settle also
represents the starting reference date for the
input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity
dates. May be a serial date number or date
string.

Period (Optional) Number of coupons per year for the
underlying bond. Default = 2 (semiannual).
Supported values are 0, 1, 2, 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond. A
vector of integers. 0 = actual/actual (default),
1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365,
4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

6-3

bkcall

EndMonthRule (Optional) End-of-month rule. This
rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day of
the month.

InterpMethod (Optional) Scalar integer zero curve
interpolation method. For cash flows that
do not fall on a date found in the ZeroData
spot curve, indicates the method used to
interpolate the appropriate zero discount rate.
Available methods are (0) nearest, (1) linear,
and (2) cubic. Default = 1. See interp1 for
more information.

StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option
contract strike price conventions.

StrikeConvention = 0 (default) defines the
strike price as the cash (dirty) price paid for
the underlying bond.

StrikeConvention = 1 defines the strike
price as the quoted (clean) price paid for the
underlying bond. The accrued interest of the
bond at option expiration is added to the input
strike price when evaluating Black’s model.

Description CallPrice = bkcall(Strike, ZeroData, Sigma, BondData,
Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention) using Black’s model, derives an NOPT-by-1 vector of
prices of European call options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input
zero curve, the appropriate zero rate for discounting such cash flows is

6-4

bkcall

obtained by extrapolating the nearest rate on the curve (i.e., if a cash
flow occurs before the first or after the last date on the input zero curve,
a flat curve is assumed).

Examples This example is based on example 22.1, page 512, of Hull. (See
References below.)

Consider a European call option on a bond maturing in 9.75 years. The
underlying bond has a clean price of $935, a face value of $1000, and
pays 10% semiannual coupons. Since the bond matures in 9.75 years,
a $50 coupon will be paid in three months and again in nine months.
Also, assume that the annualized volatility of the forward bond price is
9%. Furthermore, suppose the option expires in 10 months and has a
strike price of $1000, and that the annualized continuously compounded
risk-free discount rates for maturities of 3, 9, and 10 months are 9%,
9.5%, and 10%, respectively.

% Specify the option information.

Settle = '15-Mar-2004';

Expiry = '15-Jan-2005'; % 10 months from settlement

Strike = 1000;

Sigma = 0.09;

Convention = [0 1]';

% Specify the interest rate environment.

ZeroData = [datenum('15-Jun-2004') 0.09 -1; % 3 months

datenum('15-Dec-2004') 0.095 -1; % 9 months

datenum(Expiry) 0.10 -1]; % 10 months

% Specify the bond information.

CleanPrice = 935;

CouponRate = 0.1;

Maturity = '15-Dec-2013'; % 9.75 years from settlement

Face = 1000;

BondData = [CleanPrice CouponRate datenum(Maturity) Face];

Period = 2;

Basis = 1;

6-5

bkcall

% Call Black's model.

CallPrices = bkcall(Strike, ZeroData, Sigma, BondData, Settle,...

Expiry, Period, Basis, [], [], Convention)

CallPrices =

9.4873

7.9686

When the strike price is the dirty price (Convention = 0), the
call option value is $9.49. When the strike price is the clean price
(Convention = 1), the call option value is $7.97.

See Also bkput

References [1] Hull, John C., Options, Futures, and Other Derivatives, Prentice
Hall, 5th edition, 2003, pp. 287-288, 508-515.

6-6

bkcaplet

Purpose Price interest rate caplet using Black’s model

Syntax CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)

Arguments CapData Number of caps (NCAP) by 2 matrix containing cap
rates and bases:
[CapRates Basis]
Values for bases may be 0 = actual/actual
(default), 1 = 30/360 (SIA), 2 = actual/360,
3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

FwdRates Scalar or NCAP-by-1 vector containing forward rates
in decimal. FwdRates accrue on the same basis as
CapRates.

ZeroPrice Scalar or NCAP-by-1 vector containing zero coupon
prices with maturities corresponding to those of each
cap in CapData, per $100 nominal value.

Settle Scalar or NCAP-by-1 vector of identical elements
containing settlement date of caplets.

StartDate Scalar or NCAP-by-1 vector containing start dates of
the caplets.

EndDate Scalar or NCAP-by-1 vector containing maturity dates
of caplets.

Sigma Scalar or NCAP-by-1 vector containing volatility of
forward rates in decimal, corresponding to each caplet.

Description CapPrices = bkcaplet(CapData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma) computes the prices of interest rate
caplets for every $100 face value of principal.

6-7

bkcaplet

Examples Given a notional amount of $1,000,000, compute the value of a caplet on
October 15, 2002 that starts on October 15, 2003 and ends on January
15, 2004.

CapData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

Because the caplet is $100 notional, divide $1,000,000 by $100.

Notional = 1000000/100;

CapPrice = Notional*bkcaplet(CapData, FwdRates, ZeroPrice, ...

Settle, BeginDates, EndDates, Sigma)

CapPrice =

519.0046

See Also bkfloorlet

6-8

bkfloorlet

Purpose Price interest rate floorlet using Black’s model

Syntax FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice, Settle,
StartDate, EndDate, Sigma)

Arguments FloorData Number of floors (NFLR) by 2 matrix containing floor
rates and bases:
[FloorRate Basis]
Values for bases may be 0 = actual/actual
(default), 1 = 30/360 (SIA), 2 = actual/360,
3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

FwdRates Scalar or NFLR-by-1 vector containing forward rates
in decimal. FwdRates accrue on the same basis as
FloorRates.

ZeroPrice Scalar or NFLR-by-1 vector containing zero coupon prices
with maturities corresponding to those of each floor in
FloorData, per $100 nominal value.

Settle Scalar or NFLR-by-1 vector of identical elements
containing settlement date of floorlets.

StartDate Scalar or NFLR-by-1 vector containing start dates of the
floorlets.

EndDate Scalar or NFLR-by-1 vector containing maturity dates
of floorlets.

Sigma Scalar or NFLR-by-1 vector containing volatility of
forward rates in decimal, corresponding to each floorlet.

Description FloorPrices = bkfloorlet(FloorData, FwdRates, ZeroPrice,
Settle, StartDate, EndDate, Sigma) computes the prices of interest
rate floorlets for every $100 of notional value.

6-9

bkfloorlet

Examples Given a notional amount of $1,000,000, compute the value of a floorlet
on October 15, 2002 that starts on October 15, 2003 and ends on
January 15, 2004.

FloorData = [0.08, 1];

FwdRates = 0.07;

ZeroPrice = 100*exp(-0.065*1.25);

Settle = datenum('15-Oct-2002');

BeginDates = datenum('15-Oct-2003');

EndDates = datenum('15-Jan-2004');

Sigma = 0.20;

% Because floorlet is $100 notional, divide $1,000,000 by $100.

Notional = 1000000/100;

FloorPrice = Notional*bkfloorlet(FloorData, FwdRates, ...

ZeroPrice, Settle, BeginDates, EndDates, Sigma)

FloorPrice =

2823.91

See Also bkcaplet

6-10

bkput

Purpose Price European put option on bonds using Black’s model

Syntax PutPrice = bkput(Strike, ZeroData, Sigma, BondData, Settle, Expiry,
Period, Basis, EndMonthRule, InterpMethod, StrikeConvention)

Arguments Strike Scalar or number of options (NOPT) by 1 vector
of strike prices.

ZeroData Two-column (optionally three-column) matrix
containing zero (spot) rate information used to
discount future cash flows.
First column: Serial maturity date associated
with the zero rate in the second column.
Second column: Annualized zero rates, in
decimal form, appropriate for discounting cash
flows occurring on the date specified in the
first column. All dates must occur after Settle
(dates must correspond to future investment
horizons) and must be in ascending order.
Third column: (optional): Annual compounding
frequency. Values are 1 (annual), 2 (semiannual,
default), 3 (three times per year), 4 (quarterly),
6 (bimonthly), 12 (monthly), and -1 (continuous).

Sigma Scalar or NOPT- by-1 vector of annualized price
volatilities required by Black’s model.

6-11

bkput

BondData Row vector with three (optionally four) columns
or NOPT-by-3 (optionally NOPT-by-4) matrix
specifying characteristics of underlying bonds
in the form:
[CleanPrice CouponRate Maturity Face]
CleanPrice is the price excluding accrued
interest.
CouponRate is the decimal coupon rate.
Maturity is the bond maturity date in serial
date number format.
Face is the face value of the bond. If unspecified,
the face value is assumed to be 100.

Settle Settlement date of the options. May be a
serial date number or date string. Settle also
represents the starting reference date for the
input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity
dates. May be a serial date number or date
string.

Period (Optional) Number of coupons per year for the
underlying bond. Default = 2 (semiannual).
Supported values are 0, 1, 2, 3, 4, 6, and 12.

Basis (Optional) Day-count basis of the bond. A
vector of integers. 0 = actual/actual (default),
1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365,
4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

6-12

bkput

EndMonthRule (Optional) End-of-month rule. This rule applies
only when Maturity is an end-of-month date
for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond’s coupon payment
date is always the same numerical day of the
month. 1 = set rule on (default), meaning that a
bond’s coupon payment date is always the last
actual day of the month.

InterpMethod (Optional) Scalar integer zero curve
interpolation method. For cash flows that do
not fall on a date found in the ZeroData spot
curve, indicates the method used to interpolate
the appropriate zero discount rate. Available
methods are (0) nearest, (1) linear, and (2) cubic.
Default = 1. See interp1 for more information.

StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option
contract strike price conventions.

StrikeConvention = 0 (default) defines the
strike price as the cash (dirty) price paid for the
underlying bond.

StrikeConvention = 1 defines the strike
price as the quoted (clean) price paid for the
underlying bond. The accrued interest of the
bond at option expiration is added to the input
strike price when evaluating Black’s model.

Description PutPrice = bkput(Strike, ZeroData, Sigma, BondData,
Settle, Expiry, Period, Basis, EndMonthRule, InterpMethod,
StrikeConvention) using Black’s model, derives an NOPT-by-1 vector of
prices of European put options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input
zero curve, the appropriate zero rate for discounting such cash flows is
obtained by extrapolating the nearest rate on the curve (i.e., if a cash

6-13

bkput

flow occurs before the first or after the last date on the input zero curve,
a flat curve is assumed).

Examples This example is based on example 22.2, page 514, of Hull. (See
References below.)

Consider a European put option on a bond maturing in 10 years. The
underlying bond has a clean price of $122.82, a face value of $100, and
pays 8% semi-annual coupons. Also, assume the annualized volatility of
the forward bond yield is 20%.Furthermore, suppose the option expires
in 2.25 years and has a strike price of $115, and that the annualized
continuously compounded risk free zero (spot) curve is flat at 5%.
For a hypothetical settlement date of March 15, 2004, the following
code illustrates the use of Black’s model to duplicate the put prices in
Example 22.2 of the Hull reference. In particular, it illustrates how
to convert a broker’s yield volatility to a price volatility suitable for
Black’s model.

% Specify the option information.

Settle = '15-Mar-2004';

Expiry = '15-Jun-2006'; % 2.25 years from settlement

Strike = 115;

YieldSigma = 0.2;

Convention = [0; 1];

% Specify the interest rate environment. Since the

% zero curve is flat, interpolation into the curve always returns

% 0.05. Thus, the following curve is not unique to the solution.

ZeroData = [datenum('15-Jun-2004') 0.05 -1;

datenum('15-Dec-2004') 0.05 -1;

datenum(Expiry) 0.05 -1];

% Specify the bond information.

CleanPrice = 122.82;

CouponRate = 0.08;

Maturity = '15-Mar-2014'; % 10 years from settlement

Face = 100;

6-14

bkput

BondData = [CleanPrice CouponRate datenum(Maturity) Face];

Period = 2; % semiannual coupons

Basis = 1; % 30/360 day-count basis

% Convert a broker's yield volatility quote to a price volatility

% required by Black's model. To duplicate Example 22.2 in Hull,

% first compute the periodic (semiannual) yield to maturity from

% the clean bond price.

Yield = bndyield(CleanPrice, CouponRate, Settle, Maturity,...

Period, Basis);

% Compute the duration of the bond at option expiration. Most

% fixed-income sensitivity analyses use the modified duration

% statistic to examine the impact of small changes in periodic

% yields on bond prices. However, Hull's example operates in

% continuous time (annualized instantaneous volatilities and

% continuously compounded zero yields for discounting coupons).

% To duplicate Hull's results, use the second output of BNDDURY,

% the Macaulay duration.

[Modified, Macaulay] = bnddury(Yield, CouponRate, Expiry,...

Maturity, Period, Basis);

% Convert the yield-to-maturity from a periodic to a

% continuous yield.

Yield = Period .* log(1 + Yield./Period);

% Finally, convert the yield volatility to a price volatility via

% Hull's Equation 22.6 (page 514).

PriceSigma = Macaulay .* Yield .* YieldSigma;

% Finally, call Black's model.

PutPrices = bkput(Strike, ZeroData, PriceSigma, BondData,...

Settle, Expiry, Period, Basis, [], [], Convention)

PutPrices =

1.7838

2.4071

6-15

bkput

When the strike price is the dirty price (Convention = 0), the
call option value is $1.78. When the strike price is the clean price
(Convention = 1), the call option value is $2.41.

See Also bkcall

References [1] Hull, John C., Options, Futures, and Other Derivatives, Prentice
Hall, 5th edition, 2003, pp. 287-288, 508-515.

6-16

cbprice

Purpose Price convertible bond

Syntax [CBMatrix, UndMatrix, DebtMatrix, EqtyMatrix] =
cbprice(RiskFreeRate, StaticSpread, Sigma, Price, ConvRatio,
NumSteps, IssueDate, Settle, Maturity, CouponRate, Period, Basis,
EndMonthRule, DividendType, DividendInfo, CallType, CallInfo,
TreeType)

Arguments RiskFreeRate Annual yield of risk-free bond with the same
maturity as the convertible, compounded
continuously. (Recommended value is the yield
of a risk-free bond with the same maturity as
the convertible.)

StaticSpread Value of constant spread to the risk free rate.
Adding this to the RiskFreeRate produces the
issuer’s yield, which reflects its credit risk.

Sigma Annual volatility in decimal.

Price Price of asset at settlement or valuation date.

ConvRatio Scalar. Number of assets convertible to a single
bond.

NumSteps Number of steps in binomial tree.

IssueDate Issue date of bond.

Settle Settlement date of bond.

Maturity Maturity date of bond.

CouponRate Coupon rate payable per unit of face value.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 0, 1, 2, 3,
4, 6, and 12. Default = 2.

6-17

cbprice

Basis (Optional) Scalar value for day-count basis of
the instrument. 0 = actual/actual (default), 1
= 30/360 (SIA), 2 = actual/360, 3 = actual/365,
4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. This rule applies
only when Maturity is an end-of-month date for
a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond’s coupon payment
date is always the same numerical day of the
month. 1 = set rule on (default), meaning that a
bond’s coupon payment date is always the last
actual day of the month.

DividendType (Optional). 0 = dollar dividend (default).
1 = dividend yield.

DividendInfo (Optional) Two-column matrix of dividend
information. First column contains the
ex-dividend date corresponding to the amount in
the second column. Default = no dividend.

CallType 0 = call on cash price (default). 1 = call on clean
price.

CallInfo (Optional) Two-column matrix of call
information. First column contains the call
dates. Second column contains call prices for
every $100 face of bond. A call in the amount of
call prices is activated after the corresponding
call date. Default = no call feature.

TreeType (Optional) 0 = binomial tree (default). 1 =
trinomial tree.

All inputs are scalars except for DividendInfo and CallInfo.

Description [CBMatrix, UndMatrix, DebtMatrix, EqtyMatrix] =
cbprice(RiskFreeRate, StaticSpread, Sigma, Price,

6-18

cbprice

ConvRatio, NumSteps, IssueDate, Settle, Maturity,
CouponRate, Period, Basis, EndMonthRule, DividendType,
DividendInfo, CallType, CallInfo, TreeType) computes the price
of a convertible bond using a Cox-Ross-Rubinstein binomial tree or,
optionally, a trinomial tree.

CBMatrix is a matrix of convertible bond prices.

UndMatrix is a matrix of stock prices in binomial format.

DebtMatrix is a matrix of the debt portion of the convertible bond.

EqtyMatrix is a matrix of the equity portion of the convertible bond.

Examples Perform a spread effect analysis of a 4%-coupon convertible bond
callable at 110 at end of second year, maturing at par in five years, with
yield to maturity of 5% and spread (of YTM versus 5-year treasury) of 0,
50, 100, and 150 basis points. The underlying stock pays no dividend.

RiskFreeRate = 0.05;

Sigma = 0.3;

ConvRatio = 1;

NumSteps = 200;

IssueDate = datenum('2-Jan-2002');

Settle = datenum('2-Jan-2002');

Maturity = datenum('2-Jan-2007');

CouponRate = 0.04;

Period = 2;

Basis = 1;

EndMonthRule = 1;

DividendType = 0;

DividendInfo = [];

CallInfo = [datenum('2-Jan-2004'), 110];

CallType = 1;

TreeType = 1;

% Nested loop accross prices and static spread dimensions

% to compute convertible prices.

6-19

cbprice

for j = 0:0.005:0.015;

StaticSpread = j;

for i = 0:10:100

Price = 40+i;

[CbMatrix, UndMatrix, DebtMatrix, EqtyMatrix] = ...

cbprice(RiskFreeRate, StaticSpread, Sigma, Price, ...

ConvRatio, NumSteps, IssueDate, Settle, ...

Maturity, CouponRate, Period, Basis, EndMonthRule, ...

DividendType, DividendInfo, CallType, CallInfo, ...

TreeType);

convprice(i/10+1,j*200+1) = CbMatrix(1,1);

stock(i/10+1,j*200+1) = Price;

end

end

plot(stock, convprice);

legend({'+0 bp'; '+50 bp'; '+100 bp'; '+150 bp'});

title ('Effect of Spread using Trinomial tree - 200 steps')

xlabel('Stock Price');

ylabel('Convertible Price');

text(50, 150, ['Coupon 4% semiannual.', sprintf('\n'), ...

'110 Call-on-clean after two years.' sprintf('\n'), ...

'Maturing at par in five years.'],'fontweight','Bold')

6-20

cbprice

6-21

cdai

Purpose Accrued interest on certificate of deposit (CD)

Syntax AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate, Basis)

Arguments CouponRate Annual interest rate in decimal.

Settle Settlement date. Settle must be earlier than
or equal to Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.
2 = actual/360 (default), 3 = actual/365.

Each required input must be a number of certificates of deposit (NCDS)
by 1 or 1-by-NCDS conforming vector or scalar. The optional Basis
argument may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar,
or the empty matrix ([]).

Description AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate,
Basis) computes the accrued interest on a certificate of deposit.

AccrInt represents the accrued interest per $100 of face value.

This function assumes that the certificates of deposit pay interest at
maturity. Because of the simple interest treatment of these securities,
the functions is best used for short term maturities (less than one year).
The default simple interest calculation is the actual/360 convention
(SIA).

Examples Given a certificate of deposit (CD) with these characteristics, compute
the accrued interest due on the CD.

CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';

6-22

cdai

IssueDate = '1-Oct-01';

AccrInt = cdai(CouponRate, Settle, Maturity, IssueDate)

AccrInt =

1.2917

See Also accrfrac, bndyield, stepcpnyield, tbillyield, zeroyield

6-23

cdprice

Purpose Price certificate of deposit (CD)

Syntax [Price, AccrInt] = cdprice(Yield, CouponRate, Settle, Maturity,
IssueDate, Basis)

Arguments Yield Simple yield to maturity over the basis denominator.

CouponRate Coupon interest rate in decimal.

Settle Settlement date. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.
2 = actual/360 (default), 3 = actual/365.

Each required input must be a number of certificates of deposit (NCDS)
by 1 or 1-by-NCDS conforming vector or scalar. The optional Basis
argument may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar,
or the empty matrix ([]).

Description [Price, AccrInt] = cdprice(Yield, CouponRate, Settle,
Maturity, IssueDate, Basis) computes the price of a certificate of
deposit given its yield.

Price is the clean price of the CD per $100 of face value.

AccruedInt is the accrued interest payable at settlement per unit of
face value.

This function assumes that the certificates of deposit pay interest at
maturity. Because of the simple interest treatment of these securities,
the function is best used for short term maturities (less than one year).
The default simple interest calculation is the actual/360 convention.

6-24

cdprice

Examples Given a certificate of deposit (CD) with these characteristics, compute
the price of the CD and the accrued interest due on the settlement date.

Yield = 0.0525;
CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';

[Price, AccruedInt] = cdprice(Yield, CouponRate, Settle, ...
Maturity, IssueDate)

Price =

99.9233

AccruedInt =

1.2917

See Also bndprice, cdai, cdyield, stepcpnprice, tbillprice

6-25

cdyield

Purpose Yield on certificate of deposit (CD)

Syntax Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate,
Basis)

Arguments Price Clean price of the certificate of deposit per $100
face. If you have a vector of dirty or cash prices of
CDs, compute the accrued interest portion using
cdai.

CouponRate Annual interest rate in decimal.

Settle Settlement date. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date.

IssueDate Issue date.

Basis (Optional) Day-count basis of the instrument.
2 = actual/360 (default), 3 = actual/365.

Each required input must be a number of certificates of deposit (NCDS)
by 1 or 1-by-NCDS conforming vector or scalar. The optional Basis
argument may be either a NCDS-by-1 or a 1-by-NCDS vector, a scalar,
or the empty matrix ([]).

Description Yield = cdyield(Price, CouponRate, Settle, Maturity,
IssueDate, Basis) computes the yield to maturity of a certificate of
deposit given its clean price.

This function assumes that the certificates of deposit pay interest at
maturity. Because of the simple interest treatment of these securities,
the functions is best used for short term maturities (less than one year).
The default simple interest calculation is the actual/360 convention.

6-26

cdyield

Examples Given a certificate of deposit (CD) with these characteristics, compute
the yield on the CD.

Price = 101.125;
CouponRate = 0.05;
Settle = '02-Jan-02';
Maturity = '31-Mar-02';
IssueDate = '1-Oct-01';

Yield = cdyield(Price, CouponRate, Settle, Maturity, IssueDate)

Yield =

0.0039

See Also bndprice, cdai, cdprice, stepcpnprice, tbillprice

6-27

cfamounts

Purpose Cash flow and time mapping for bond portfolio

Syntax [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] =
cfamounts(CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Arguments CouponRate Decimal number indicating the annual percentage
rate used to determine the coupons payable on a
bond.

Settle Settlement date. A vector of serial date numbers or
date strings. Settle must be earlier than or equal
to Maturity.

Maturity Maturity date. A vector of serial date numbers or
date strings.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2, 3, 4, 6, and
12. Default = 2.

Basis (Optional) Day-count basis of the bond. A
vector of integers. A scalar. 0 = actual/actual
(default), 1 = 30/360 (SIA), 2 = actual/360,
3 = actual/365, 4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond’s coupon payment date is
always the same numerical day of the month. 1 =
set rule on (default), meaning that a bond’s coupon
payment date is always the last actual day of the
month.

IssueDate (Optional) Date when a bond was issued.

6-28

cfamounts

FirstCouponDate(Optional) Date when a bond makes its first
coupon payment. When FirstCouponDate
and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining
the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to
the maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The
coupon structure of a bond is truncated at the
LastCouponDate regardless of where it falls and
will be followed only by the bond’s maturity cash
flow date.

StartDate (Reserved input argument, currently unused;
optional) Date when a bond actually starts (the date
from which a bond’s cash flows can be considered).
To make an instrument forward starting, specify
this date as a future date. If StartDate is not
explicitly specified, the effective start date is the
settlement date.

Face (Optional) Face or par value. Default = 100.

Required arguments must be number of bonds (NUMBONDS) by 1 or
1-by-NUMBONDS conforming vectors or scalars. Optional arguments must
be either NUMBONDS-by-1 or 1-by-NUMBONDS conforming vectors, scalars,
or empty matrices.

Description [CFlowAmounts, CFlowDates, TFactors, CFlowFlags] =
cfamounts(CouponRate, Settle, Maturity, Period, Basis,
EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face) returns matrices of cash flow amounts, cash flow
dates, time factors, and cash flow flags for a portfolio of NUMBONDS fixed
income securities. The elements contained in the cash flow matrix, time
factor matrix, and cash flow flag matrix correspond to the cash flow
dates for each security. The first element of each row in the cash flow

6-29

cfamounts

matrix is the accrued interest payable on each bond. This is zero in the
case of all zero coupon bonds. This function determines all cash flows
and time mappings for a bond whether or not the coupon structure
contains odd first or last periods. All output matrices are padded with
NaNs as necessary to ensure that all rows have the same number of
elements.

CFlowAmounts is the cash flow matrix of a portfolio of bonds. Each row
represents the cash flow vector of a single bond. Each element in a
column represents a specific cash flow for that bond.

CFlowDates is the cash flow date matrix of a portfolio of bonds. Each
row represents a single bond in the portfolio. Each element in a column
represents a cash flow date of that bond.

TFactors is the matrix of time factors for a portfolio of bonds. Each row
corresponds to the vector of time factors for each bond. Each element in
a column corresponds to the specific time factor associated with each
cash flow of a bond. Time factors are useful in determining the present
value of a stream of cash flows. The term "time factor" refers to the
exponent TF in the discounting equation

where:

PV = Present value of a cash flow

CF = The cash flow amount

z = The risk-adjusted annualized rate or yield corresponding to
given cash flow. The yield is quoted on a semiannual basis.

TF = Time factor for a given cash flow. Time is measured
in semiannual periods from the settlement date to the
cash flow date. In computing time factors, we use SIA
actual/actual day count conventions for all time factor
calculations.

6-30

cfamounts

CFlowFlags is the matrix of cash flow flags for a portfolio of bonds.
Each row corresponds to the vector of cash flow flags for each bond.
Each element in a column corresponds to the specific flag associated
with each cash flow of a bond. Flags identify the type of each cash flow
(e.g., nominal coupon cash flow, front or end partial or "stub" coupon,
maturity cash flow). Possible values are shown in the table.

Flag Cash Flow Type

0 Accrued interest due on a bond at settlement.

1 Initial cash flow amount smaller than normal due to "stub"
coupon period. A stub period is created when the time from
issue date to first coupon is shorter than normal.

2 Larger than normal initial cash flow amount because first
coupon period is longer than normal.

3 Nominal coupon cash flow amount.

4 Normal maturity cash flow amount (face value plus the
nominal coupon amount).

5 End "stub" coupon amount (last coupon period abnormally
short and actual maturity cash flow is smaller than normal).

6 Larger than normal maturity cash flow because last coupon
period longer than normal.

7 Maturity cash flow on a coupon bond when the bond has less
than one coupon period to maturity.

8 Smaller than normal maturity cash flow when bond has less
than one coupon period to maturity.

9 Larger than normal maturity cash flow when bond has less
than one coupon period to maturity.

10 Maturity cash flow on a zero coupon bond.

6-31

cfamounts

Examples Consider a portfolio containing a corporate bond paying interest
quarterly and a treasury bond paying interest semiannually. Compute
the cash flow structure and the time factors for each bond.

Settle = '01-Nov-1993';
Maturity = ['15-Dec-1994';'15-Jun-1995'];
CouponRate= [0.06; 0.05];
Period = [4;2];
Basis = [1;0];
[CFlowAmounts, CFlowDates, TFactors, CFlowFlags] = ...
cfamounts(CouponRate,Settle, Maturity, Period, Basis)

CFlowAmounts =

-0.7667 1.5000 1.5000 1.5000 1.5000 101.5000
-1.8989 2.5000 2.5000 2.5000 102.5000 NaN

CFlowDates =

728234 728278 728368 728460 728552 728643
728234 728278 728460 728643 728825 NaN

TFactors =

0 0.2404 0.7403 1.2404 1.7403 2.2404
0 0.2404 1.2404 2.2404 3.2404 NaN

CFlowFlags =

0 3 3 3 3 4
0 3 3 3 4 NaN

See Also accrfrac, cfdates, cpncount, cpndaten, cpndatenq, cpndatep,
cpndatepq, cpndaysn, cpndaysp, cpnpersz

6-32

convfactor

Purpose Treasury bond conversion factors

Syntax ConvFactor = convfactor(RefDate, Maturity, CouponRate, RefYield,
Convention)

Arguments RefDate Reference dates, for which conversion factor
is computed (usually the first day of delivery
months).

Maturity Maturity date of underlying bond.

CouponRate Annual coupon rate of underlying bond in decimal.

RefYield (Optional) Reference semiannual yield. Default
= 0.06 (6%).

Convention (Optional) Conversion factor convention. Scalar.
Valid values are:

1 = U. S. Treasury bond (20-year) and Treasury
note (10-year) futures contract (default).

2 = U. S. 2-year and 5-year Treasury note futures
contract.

Description ConvFactor = convfactor(RefDate, Maturity, CouponRate,
RefYield, Convention) computes conversion factors based upon a
reference 6% semiannual yield.

Note You can verify the output of this function by comparing the
output against the quotations provided by the Chicago Board of Trade
(http://www.cbot.com).

Examples RefDate = [datenum('1-Dec-2002');
datenum('1-Mar-2003');

6-33

http://www.cbot.com

convfactor

datenum('1-Jun-2003');
datenum('1-Sep-2003');
datenum('1-Dec-2003');
datenum('1-Sep-2003');
datenum('1-Dec-2002');
datenum('1-Jun-2003')];

Maturity = [datenum('15-Nov-2012');
datenum('15-Aug-2012');
datenum('15-Feb-2012');
datenum('15-Feb-2011');
datenum('15-Aug-2011');
datenum('15-Aug-2010');
datenum('15-Aug-2009');
datenum('15-Feb-2010')];

CouponRate = [0.04; 0.04375; 0.04875; 0.05;
0.05; 0.0575; 0.06; 0.065];

ConvFactor = convfactor(RefDate, Maturity, CouponRate)

ConvFactor =

0.8539
0.8858
0.9259
0.9418
0.9403
0.9862
1.0000
1.0266

See Also tfutbyprice, tfutbyyield

6-34

liborduration

Purpose Duration of LIBOR-based interest rate swap

Syntax [PayFixDuration GetFixDuration] = liborduration(SwapFixRate,
Tenor, Settle)

Arguments SwapFixRate Scalar or column vector of swap fixed rates in
decimal.

Tenor Scalar or column vector indicating life of the swap in
years. Fractional numbers are rounded upward.

Settle Scalar or column vector of settlement dates.

Description [PayFixDuration GetFixDuration] =
liborduration(SwapFixRate, Tenor, Settle) computes the
duration of LIBOR-based interest rate swaps.

PayFixDuration is the modified duration, in years, realized when
entering pay-fix side of the swap.

GetFixDuration is the modified duration, in years, realized when
entering receive-fix side of the swap.

Examples Given the data

SwapFixRate = 0.0383;
Tenor = 7;
Settle = datenum('11-Oct-2002');

compute the swap durations.

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,...

Tenor, Settle)

PayFixDuration =

6-35

liborduration

-4.7567

GetFixDuration =

4.7567

See Also liborfloat2fixed, liborprice

6-36

liborfloat2fixed

Purpose Compute par fixed-rate of swap given 3-month LIBOR data

Syntax [FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis)

Arguments ThreeMonthRates Three-month Eurodollar futures data or
forward rate agreement data. (A forward rate
agreement stipulates that a certain interest
rate applies to a certain principal amount for
a given future time period.) An n-by-3 matrix
in the form of [month year IMMQuote]. The
floating rate is assumed to compound quarterly
and to accrue on an actual/360 basis.

Settle Settlement date of swap. Scalar.

Tenor Life of the swap. Scalar.

StartDate (Optional) Scalar value to denote reference
date for valuation of (forward) swap. This in
effect allows forward swap valuation. Default
= Settle.

Interpolation (Optional) Interpolation method to determine
applicable forward rate for months when
no Eurodollar data is available. Default is
'linear' or 1. Other possible values are
'Nearest' or 0, and 'Cubic' or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes
whether futures/forward convexity adjustment
is required. Pertains to forward rate
adjustments when those rates are taken from
Eurodollar futures data.

6-37

liborfloat2fixed

RateParam (Optional) Short-rate model’s parameters
(Hull-White) [a S], where the short-rate
process is

Default = [0.05 0.015].

InArrears (Optional) Default = 0 (off). Set to 1 for on. If
on, the routine does an automatic an convexity
adjustment to forward rates.

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or
frequency of payment on the fixed side. Also,
the reset frequency. Default = 4 (quarterly).
Other values are 1, 2, and 12.

FixedBasis (Optional). Scalar value. Basis of the fixed side.
0 = actual/actual, 1 = 30/360 (SIA, default),
2 = actual/360 , 3 = actual/365, 4 = 30/360 (PSA),
5 = 30/360 (ISDA), 6 = 30/360 (European), 7 =
act/365 (Japanese).

Description [FixedSpec, ForwardDates, ForwardRates] =
liborfloat2fixed(ThreeMonthRates, Settle, Tenor, StartDate,
Interpolation, ConvexAdj, RateParam, InArrears, Sigma,
FixedCompound, FixedBasis computes forward rates, dates, and
the swap fixed rate.

FixedSpec specifies the structure of the fixed-rate side of the swap:

• Coupon: Par-swap rate

• Settle: Start date

• Maturity: End date

• Period: Frequency of payment

• Basis: Accrual basis

6-38

liborfloat2fixed

ForwardDates are dates corresponding to ForwardRates (all third
Wednesdays of the month, spread three months apart). The first
element is the third Wednesday immediately after Settle.

ForwardRates are forward rates corresponding to the forward dates,
quarterly compounded, and on the actual/360 basis.

Note To preserve input integrity, Tenor is rounded upward to the
closest integer. Currently traded tenors are 2, 5, and 10 years.

The function assumes that floating-rate observations occur quarterly
on the third Wednesday of a delivery month. The first delivery month
is the month of the first third Wednesday after Settle. Floating-side
payments occur on the third-month anniversaries of observation dates.

Examples Use the supplied EDdata.xls file as input to a liborfloat2fixed
computation.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

[FixedSpec, ForwardDates, ForwardRates] =...
liborfloat2fixed(EDFutData, Settle, Tenor)

FixedSpec =

Coupon: 0.0222
Settle: '16-Oct-2002'

Maturity: '16-Oct-2004'
Period: 4
Basis: 1

ForwardDates =

6-39

liborfloat2fixed

731505
731596
731687
731778
731869
731967
732058
732149

ForwardRates =

0.0177
0.0166
0.0170
0.0188
0.0214
0.0248
0.0279
0.0305

See Also liborduration, liborprice

6-40

liborprice

Purpose Price swap given swap rate

Syntax Price = liborprice(ThreeMonthRates, Settle, Tenor,
SwapRate, StartDate, Interpolation, ConvexAdj, RateParam,

InArrears, Sigma, FixedCompound, FixedBasis)

Arguments ThreeMonthRates Three-month Eurodollar futures data or
forward rate agreement data. (A forward rate
agreement stipulates that a certain interest
rate applies to a certain principal amount for
a given future time period.) An n-by-3 matrix
in the form of [month year IMMQuote].
The floating rate is assumed to compound
quarterly and to accrue on an actual/360 basis.

Settle Settlement date of swap. Scalar.

Tenor Life of the swap. Scalar.

SwapRate Swap rate in decimal.

StartDate (Optional) Scalar value to denote reference
date for valuation of (forward) swap. This in
effect allows forward swap valuation. Default
= Settle.

Interpolation (Optional) Interpolation method to determine
applicable forward rate for months when
no Eurodollar data is available. Default is
'linear' or 1. Other possible values are
'Nearest' or 0, and 'Cubic' or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes
whether futures/forward convexity adjustment
is required. Pertains to forward rate
adjustments when those rates are taken from
Eurodollar futures data.

6-41

liborprice

RateParam (Optional) Short-rate model’s parameters
(Hull-White) [a S], where the short-rate
process is

Default = [0.05 0.015].

InArrears (Optional) Default = 0 (off). Set to 1 for on. If
on, the routine does an automatic convexity
adjustment to forward rates.

Sigma (Optional) Overall annual volatility of caplets.

FixedCompound (Optional) Scalar value. Compounding or
frequency of payment on the fixed side. Also,
the reset frequency. Default = 4 (quarterly).
Other values are 1, 2, and 12.

FixedBasis (Optional). Scalar value. Basis of the fixed
side. 0 = actual/actual, 1 = 30/360 (SIA,
default), 2 = actual/360, 3 = actual/365, 4 =
30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360
(European), 7 = act/365 (Japanese).

Description Price = liborprice(ThreeMonthRates, Settle, Tenor,
SwapRate, StartDate, Interpolation, ConvexAdj, RateParam,
InArrears, Sigma, FixedCompound, FixedBasis) computes the
price per $100 notional value of a swap given the swap rate. A positive
result indicates that fixed side is more valuable than the floating side.

Price is the present value of the difference between floating and
fixed-rate sides of the swap per $100 notional.

Examples This example shows that a swap paying the par swap rate has a value
of 0.

Load the input data.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');

6-42

liborprice

Tenor = 2;

Compute the fixed rate from the Eurodollar data.

FixedSpec = liborfloat2fixed(EDFutData, Settle, Tenor);

Compute the price of a par swap.

Price = liborprice(EDFutData, Settle, Tenor, FixedSpec.Coupon)

Price =

4.1633e-015

MATLAB computes a value for Price that is effectively equal to 0.

See Also liborduration, liborfloat2fixed

6-43

mbscfamounts

Purpose Cash flow and time mapping for mortgage pool

Syntax [CFlowAmounts, CFlowDates, TFactors, Factors] =
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix)

Arguments Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal
to Maturity.

Maturity Maturity date. A serial date number or date
string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default =
GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default
= 0. Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized
prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

6-44

mbscfamounts

Description [CFlowAmounts, CFLowDates, TFactors, Factors] =
mbscfamounts(Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes cash
flows between settle and maturity dates, the corresponding time factors
in months from settle, and the mortgage factor (the fraction of loan
principal outstanding).

CFlowAmounts is a vector of cash flows starting from Settle through
end of the last month (Maturity).

CFlowDates indicates when cash flows occur, including at Settle. A
negative number at Settle indicates accrued interest is due.

TFactors is a vector of times in months from Settle, corresponding to
each cash flow.

Factors is a vector of mortgage factors (the fraction of the balance still
outstanding at the end of each month).

Examples Example 1. Given a mortgage with the following characteristics,
compute the cash flow amounts and dates, the time factors, and the
mortgage factors.

Settle = datenum('17-April-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
PrepaySpeed = 100;

[CFlowAmounts, CFLowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, PrepaySpeed)

The result is contained in four 334-element row vectors.

6-45

mbscfamounts

Example 2. Given a portfolio of mortgage-backed securities, use
mbscfamounts to compute the cash flows and other factors from the
portfolio.

Settle = datenum(['13-Jan-2000';'17-Apr-2002';'17-May-2002']);
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775];
Delay = 14;
PrepaySpeed = 100;

[CFlowAmounts, CFlowDates, TFactors, Factors] = ...
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, PrepaySpeed)

Each output is a 3-by-361 element matrix padded with NaNs wherever
elements are missing.

References [1] PSA Uniform Practices, SF-4

6-46

mbsconvp

Purpose Convexity of mortgage pool given price

Syntax Convexity = mbsconvp(Price, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A serial date number or date
string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default =
GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized
prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

6-47

mbsconvp

Description Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)
computes mortgage-backed security convexity, given time information,
price at settlement, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the convexity of the security.

Price = 101;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)

Convexity =

71.6299

See Also mbsconvy, mbsdurp, mbsdury

References [1] PSA Uniform Practices, SF-49

6-48

mbsconvy

Purpose Convexity of mortgage pool given yield

Syntax Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized
prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

6-49

mbsconvy

computes mortgage-backed security convexity, given time information,
semiannual mortgage yield, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the convexity of the security.

Yield = 0.07125;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
Speed = 100;
CouponRate = 0.075;
Delay = 14;

Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, ...
GrossRate, CouponRate, Delay, Speed)

Convexity =

72.8263

See Also mbsconvp, mbsdurp, mbsdury

References [1] PSA Uniform Practices, SF-49

6-50

mbsdurp

Purpose Duration of mortgage pool given price

Syntax [YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized
prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

6-51

mbsdurp

Description [YearDuration, ModDuration] = mbsdurp(Price, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay,
PrepaySpeed, PrepayMatrix) computes the mortgage-backed security
Macaulay (YearDuration) and modified (ModDuration) durations, given
time information, price at settlement, and optionally, a prepayment
model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the Macaulay and modified durations of the security.

Price = 101;

Settle = datenum('15-Apr-2002');

Maturity = datenum('1 Jan 2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = 0.075;;

Delay = 14;

Speed = 100;

[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,...

IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

6.4380

ModDuration =

6.2080

See Also mbsconvp, mbsconvy, mbsdury

6-52

mbsdurp

References [1] PSA Uniform Practices, SF-49

6-53

mbsdury

Purpose Duration of mortgage pool given yield

Syntax [YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix)

Arguments Yield Mortgage yield, compounded monthly, in decimal.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate Net coupon rate, in decimal. Default = GrossRate.

Delay Delay in days.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0.
Set PrepaySpeed to [] if you input a customized
prepayment matrix.

PrepayMatrix (Optional) Used only when PrepayModel and
PrepaySpeed are unspecified.) Customized
prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

6-54

mbsdury

Description [YearDuration, ModDuration] = mbsdurvy(Yield, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay,
PrepayModel, PrepaySpeed, PrepayMatrix) computes the
mortgage-backed security Macaulay (YearDuration) and Modified
(ModDuration) durations, given time information, yield to maturity, and
optionally, a prepayment model.

Note If you specify the PSA or FHA model, it will be seasoned with how
long the debt has been outstanding (the loan’s age).

Examples Given a mortgage-backed security with the following characteristics,
compute the Macaulay and Modified durations of the security.

Yield = 0.07298413;

Settle = '15-Apr-2002';

Maturity = '1 Jan 2030';

IssueDate = '1-Jan-2000';

GrossRate = 0.08125;

Speed = 100;

CouponRate = 0.075;

Delay = 14;

[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,...

IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

6.4380

ModDuration =

6.2080

See Also mbsconvp, mbsconvy, mbsdurp

6-55

mbsdury

References [1] PSA Uniform Practices, SF-49

6-56

mbsnoprepay

Purpose End-of-month mortgage cash flows and balances without prepayment

Syntax [Balance, Interest, Payment, Principal] =
mbsnoprepay(OriginalBalance, GrossRate, Term)

Arguments OriginalBalance Original face value in dollars.

GrossRate Gross coupon rate (including fees), in decimal.

Term Term of the mortgage in months.

All inputs are number of mortgage-backed securities (NMBS) by 1 vectors.

Description [Balance, Interest, Payment, Principal] =
mbsnoprepay(OriginalBalance, GrossRate, Term) computes
end-of-month mortgage balance, interest payments, principal payments,
and cash flow payments with zero prepayment rate.

The function returns amortizing cash flows and balances over a
specified term with no prepayment. When the lengths of passthroughs
are not the same, MATLAB pads the shorter ones with NaN.

Balance lists the end-of-month balances over the life of the passthrough.

Interest lists all end-of-month interest payments over the life of the
passthrough.

Payment lists all end-of-month payments over the life of the passthrough.

Principal lists all scheduled end-of-month principal payments over
the life of the passthrough.

All outputs are Term-by-1 vectors.

Examples Given mortgage pools with the following characteristics, compute an
amortization schedule.

OriginalBalance = 400000000;

6-57

mbsnoprepay

CouponRate = 0.08125;
Term = [357; 355]; % Three- and five-month old mortgage pools.

[Balance, Interest, Payment, Principal] = ...
mbsnoprepay(OriginalBalance, CouponRate, Term);

6-58

mbsoas2price

Purpose Price given option-adjusted spread

Syntax Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation, PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: Serial date numbers.

Column 2: Spot rates with maturities corresponding
to the dates in Column 1, in decimal (e.g., 0.075).

Column 3: Compounding of the rates in Column
2. (This is the agency spot rate on the settlement
date.)

OAS Option-adjusted spreads in basis points.

Settle Settlement date (scalar only). A serial date number
or date string. Date when option-adjusted spread is
calculated.

Maturity Maturity date. Scalar or vector in serial date
number or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

6-59

mbsoas2price

Interpolation Interpolation method. Computes the corresponding
spot rates for the bond’s cash flow. Available
methods are (0) nearest, (1) linear, and (2) cubic
spline. Default = 1. See interp1 for more
information.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of
month’s CPR. Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each column
corresponds to a mortgage-backed security, and each
row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix) computes the clean price of a
passthrough security for each $100 face value of outstanding principal.

Examples Given an option-adjusted spread, a spot curve, and a prepayment
assumption, compute theoretical price of a mortgage pool.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

Choose a settlement date.

6-60

mbsoas2price

Settle = datenum('20-Aug-2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Use compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Calculate the price from the option-adjusted spread.

Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

Price =

6-61

mbsoas2price

95.0000
95.0000
95.0000

See Also mbsprice2oas, mbsyield2oas, mbsoas2yield

6-62

mbsoas2yield

Purpose Yield given option-adjusted spread

Syntax [MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle,
Maturity, IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: Serial date numbers.

Column 2: Spot rates with maturities
corresponding to the dates in Column 1, in
decimal (e.g., 0.075).

Column 3: Compounding of the rates in Column
2. (This is the agency spot rate on the settlement
date.)

OAS Option-adjusted spreads in basis points.

Settle Settlement date (scalar only). A serial
date number or date string. Date when
option-adjusted spread is calculated.

Maturity Maturity date. Scalar or vector in serial date
number or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default =
0 (no delay between payment and receipt.

6-63

mbsoas2yield

Interpolation Interpolation method. Computes the
corresponding spot rates for the bond’s cash flow.
Available methods are (0) nearest, (1) linear, and
(2) cubic spline. Default = 1. See interp1 for
more information.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default =
end of month’s CPR. Set PrepaySpeed to [] if
you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each
column corresponds to a mortgage-backed
security, and each row corresponds to each
month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [MYield, BEMBSYield] = mbsoas2yield(ZeroCurve, OAS,
Settle, Maturity, IssueDate, GrossRate, CouponRate, Delay,
Interpolation, PrepaySpeed, PrepayMatrix) computes the
mortgage and bond-equivalent yields of a passthrough security.

MYield is the yield to maturity of the mortgage-backed security (the
mortgage yield). This yield is compounded monthly (12 times per year).

Example: 0.075 (7.5%)

BEMBSYield is the corresponding bond equivalent yield of the
mortgage-backed security. This yield is compounded semiannually (two
times per year).

Example: 0.0761 (7.61%)

6-64

mbsoas2yield

Examples Given an option-adjusted spread, a spot curve, and a prepayment
assumption, compute the theoretical yield to maturity of a mortgage
pool.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

Choose a settlement date.

Settle = datenum('08/20/2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

OAS = [26.0502; 28.6348; 31.2222];
Maturity = datenum('02-Jan-2030');

6-65

mbsoas2yield

IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Compute the mortgage yield and bond equivalent mortgage yield.

[MYield BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ...
Interpolation, PrepaySpeed)

MYield =

0.0802
0.0814
0.0828

BEMBSYield =

0.0816
0.0828
0.0842

See Also mbsprice2oas, mbsyield2oas, mbsoas2price

6-66

mbspassthrough

Purpose Mortgage pool cash flows and balances with prepayment

Syntax [Balance, Payment, Principal, Interest, Prepayment] =
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,
TermRemaining, PrepaySpeed, PrepayMatrix)

Arguments OriginalBalance Original balance value in dollars (balance at the
beginning of each TermRemaining).

GrossRate Gross coupon rate (including fees), in decimal.

OriginalTerm Term of the mortgage in months.

TermRemaining (Optional) Number of full months between
settlement and maturity.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default = 0
(no prepayment). Set PrepaySpeed to [] if you
input a customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed
is unspecified. Customized prepayment
vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column
corresponds to each mortgage-backed security,
and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [Balance, Payment, Principal, Interest, Prepayment] =
passthrough(OriginalBalance, GrossRate, OriginalTerm,
TermRemaining, PrepaySpeed, PrepayMatrix) computes the cash
flow of principal, interest, and prepayment of passthrough securities.

All outputs are TermRemaining-by-1 vectors of end-of-month values.

6-67

mbspassthrough

Balance is the principal balance at end of month.

Payment is the total monthly payment.

Principal is the principal portion of the payment.

Interest is the interest portion of the payment.

Prepayment indicates any unscheduled principal payment.

By default, the securities are seasoned. The applicable CPR depends
upon TermRemaining based upon a 30-year prepayment model
(PSA or FHA). You may supply a different CPR vector of size
TermRemaining-by-1.

Examples Compute the cash flows and balances of a three-month old mortgage
pool with original term of 360 months, assuming a prepayment speed
of 100.

OriginalBalance = 100000;
GrossRate = 0.08125;
OriginalTerm = 360;
TermRemaining = 357;
PrepaySpeed = 100;

[Balance, Payment, Principal, Interest, Prepayment] =...
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,...
TermRemaining, PrepaySpeed);

See Also mbswal

6-68

mbsprice

Purpose Mortgage-backed security price given yield

Syntax [Price, AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0 (no
prepayment). Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each column
corresponds to a mortgage-backed security, and each
row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

6-69

mbsprice

Description [Price, AccrInt] = mbsprice(Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,
PrepayMatrix) computes a mortgage-backed security price, given time
information, mortgage yield at settlement, and optionally, a prepayment
model.

All outputs are scalar values.

Price is the clean price for every $100 face value of the securities.

AccrInt is the accrued interest of the mortgage-backed securities.

Examples Example 1. Given a mortgage-backed security with the following
characteristics, compute the price and the accrued interest due on the
security.

Yield = 0.0725;

Settle = datenum('15-Apr-2002');

Maturity = datenum('1 Jan 2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = 0.075;

Delay = 14;

Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...

GrossRate, CouponRate, Delay, Speed)

Price =

101.3147

AccrInt =

0.2917

6-70

mbsprice

Example 2. Given a portfolio of mortgage-backed securities, compute
the clean prices and accrued interest.

Yield = 0.075;

Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';...

'13-Jan-2000']);

Maturity = datenum('1-Jan-2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = [0.075; 0.07875; 0.0775; 0.08125];

Delay = 14;

Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...

GrossRate, CouponRate, Delay, Speed)

Price =

99.7085

102.0678

101.2792

104.0175

AccrInt =

0.2500

0.3500

0.3444

0.2708

See Also mbsyield

References [1] PSA Uniform Practices, SF-49

6-71

mbsprice2oas

Purpose Option-adjusted spread given price

Syntax OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: Serial date numbers.

Column 2: Spot rates with maturities
corresponding to the dates in Column 1, in
decimal (e.g., 0.075).

Column 3: Compounding of the rates in Column
2. Values are 1 (annual), 2 (semiannual, 3 (three
times per year), 4 (quarterly), 6 (bimonthly),
12 (monthly), and -1 (continuous).

Price Clean price for every $100 face value of bond
issue.

Settle Settlement date (scalar only). A serial
date number or date string. Date when
option-adjusted spread is calculated.

Maturity Maturity date. Scalar or vector in serial date
number or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment
from homeowner and receipt by bondholder.
Default = 0 (no delay between payment and
receipt.

6-72

mbsprice2oas

Interpolation Interpolation method. Computes the
corresponding spot rates for the bond’s cash flow.
Available methods are (0) nearest, (1) linear,
and (2) cubic spline. Default = 1. See interp1
for more information.

PrepaySpeed (Optional) Relation of the conditional payment
rate (CPR) to the benchmark model. Default =
end of month’s CPR. Set PrepaySpeed to [] if
you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A
matrix of size max(TermRemaining)-by-NMBS.
Missing values are padded with NaNs. Each
column corresponds to a mortgage-backed
security, and each row corresponds to each
month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix) computes the option-adjusted spread
in basis points.

Examples Calculate the option-adjusted spread of a 30-year fixed-rate mortgage
with about a 28-year weighted average maturity remaining, given
assumptions of 0, 50, and 100 PSA prepayments.

Create the bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

6-73

mbsprice2oas

Choose a settlement date.

Settle= datenum('20-Aug-2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];
Interpolation = 1;
PrepaySpeed = [0; 50; 100];

Compute the option adjusted spread.

6-74

mbsprice2oas

OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ...
PrepaySpeed)

OAS =

26.0502
28.6348
31.2222

See Also mbsoas2price, mbsoas2yield, mbsyield2oas

6-75

mbsprice2speed

Purpose Implied PSA prepayment speeds given price

Syntax [ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = mbsprice2speed(Price,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

PrepayMatrix Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are
padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0 (no
delay between payment and receipt.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] =
mbsprice2speed(Price, Settle, Maturity, IssueDate,
GrossRate, PrepayMatrix, CouponRate, Delay) computes PSA
prepayment speeds implied by pool prices and projected (user-defined)

6-76

mbsprice2speed

prepayment vectors. The calculated PSA speed produces the same
price, modified duration, or modified convexity, depending upon the
output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples Calculate the equivalent PSA benchmark prepayment speeds for a
mortgage pool with these characteristics and prepayment matrix.

Price = 101;
Settle = datenum('1-Jan-2000');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate = 0.075;
Delay = 14;

[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = ...
mbsprice2speed(Price,Settle, Maturity, IssueDate, ...
GrossRate, PrepayMatrix, CouponRate, Delay)

ImpSpdOnPrc =

118.5980

ImpSpdOnDur =

118.3946

6-77

mbsprice2speed

ImpSpdOnCnv =

109.5115

See Also mbsprice, mbsyield2speed

References [1] PSA Uniform Practices, SF-49

6-78

mbswal

Purpose Weighted average life of mortgage pool

Compatibility PSA

Syntax WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, CouponRate,
Delay, PrepaySpeed, PrepayMatrix)

Arguments Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of
month’s CPR. Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix
of size max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

6-79

mbswal

Description WAL = mbswal(Settle, Maturity, IssueDate, GrossRate,
CouponRate, Delay, PrepaySpeed, PrepayMatrix) computes the
weighted average life, in number of years, of a mortgage pool, as
measured from the settlement date.

Examples Given a passthrough security with the following characteristics,
compute the weighted average life of the security.

Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, ...
CouponRate, Delay, Speed)

WAL =

10.5477

See Also mbspassthrough

References [1] PSA Uniform Practices, SF-49

6-80

mbsyield

Purpose Mortgage-backed security yield given price

Syntax [MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, PrepaySpeed, PrepayMatrix)

Arguments Price Clean price for every $100 face value.

Settle Settlement date. A serial date number or date string.
Settle must be earlier than or equal to Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = 0 (no
prepayment). Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix
of size max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed,

6-81

mbsyield

PrepayMatrix) computes a mortgage-backed security yield to maturity
and the bond equivalent yield, given time information, price at
settlement, and optionally, a prepayment model.

MYield is the yield to maturity of the mortgage-backed security (the
mortgage yield). This yield is compounded monthly (12 times a year).

BEMBSYield is the corresponding bond equivalent yield of the
mortgage-backed security. This yield is compounded semiannually
(two times a year).

Examples Example 1. Given a mortgage-backed security with the following
characteristics, compute the mortgage yield and the bond equivalent
yield of the security.

Price = 102;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

0.0715

BEMBSYield =

0.0725

Example 2. Given a portfolio of mortgage-backed securities, compute
the mortgage yields and the bond equivalent yields.

6-82

mbsyield

Price = 102;

Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';...

'13-Jan-2000']);

Maturity = datenum('1-Jan-2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

CouponRate = [0.075; 0.07875; 0.0775; 0.08125];

Delay = 14;

Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,...

IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

0.0717

0.0751

0.0739

0.0779

BEMBSYield =

0.0728

0.0763

0.0750

0.0791

See Also mbsprice

References [1] PSA Uniform Practices, SF-49

6-83

mbsyield2oas

Purpose Option-adjusted spread given yield

Syntax OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity, IssueDate,
GrossRate, CouponRate, Delay, Interpolation PrepaySpeed,
PrepayMatrix)

Arguments ZeroCurve A matrix of three columns:

Column 1: serial date numbers

Column 2: spot rates with maturities corresponding
to the dates in Column 1, in decimal (e.g., 0.075)

Column 3: Compounding of the rates in Column 2.
Values are 1 (annual), 2 (semiannual, 3 (three times
per year), 4 (quarterly), 6 (bimonthly), 12 (monthly),
and -1 (continuous).

Yield Mortgage yield, compounded monthly (in decimal).

Settle Settlement date (scalar only). A serial date number
or date string. Date when option-adjusted spread is
calculated.

Maturity Maturity date. Scalar or vector in serial date number
or date string format.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

6-84

mbsyield2oas

Interpolation Interpolation method. Computes the corresponding
spot rates for the bond’s cash flow. Available methods
are (0) nearest, (1) linear, and (2) cubic spline.
Default = 1. See interp1 for more information.

PrepaySpeed (Optional) Relation of the conditional payment rate
(CPR) to the benchmark model. Default = end of
month’s CPR. Set PrepaySpeed to [] if you input a
customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix
of size max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds to a
mortgage-backed security, and each row corresponds
to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description OAS = mbsyield2oas(ZeroCurve, Yield, Settle, Maturity,
IssueDate, GrossRate, CouponRate, Delay, Interpolation,
PrepaySpeed, PrepayMatrix) computes the option-adjusted spread
in basis points.

Examples Calculate the option-adjusted spread of a 30-year fixed-rate mortgage
pool with about 28-year weighted average maturity left, given
assumptions of 0, 50, and 100 PSA prepayments.

Create bonds matrix.

Bonds = [datenum('11/21/2002') 0 100 0 2 1;
datenum('02/20/2003') 0 100 0 2 1;
datenum('07/31/2004') 0.03 100 2 3 1;
datenum('08/15/2007') 0.035 100 2 3 1;
datenum('08/15/2012') 0.04875 100 2 3 1;
datenum('02/15/2031') 0.05375 100 2 3 1];

6-85

mbsyield2oas

Choose a settlement date.

Settle = datenum('08/20/2002');

Assume these clean prices for the bonds.

Prices = [98.97467;
98.58044;

100.10534;
98.18054;

101.38136;
99.25411];

Use this formula to compute spot compounding for the bonds.

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding];

Assign parameters.

Price = 95;
Maturity = datenum('02-Jan-2030');
IssueDate = datenum('02-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0 50 100];

Compute the yield and from the yield compute the option-adjusted
spread.

[mbsyld, beyld] = mbsyield(Price, Settle, ...

Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed);

6-86

mbsyield2oas

OAS = mbsyield2oas(ZeroCurve, mbsyld, Settle, ...

Maturity, IssueDate, GrossRate, CouponRate, Delay, ...

Interpolation, PrepaySpeed)

OAS =

26.0502

28.6348

31.2222

See Also mbsoas2price, mbsoas2yield, mbsprice2oas

6-87

mbsyield2speed

Purpose Implied PSA prepayment speeds given yield

Syntax [ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = mbsyield2speed(Yield,
Settle, Maturity, IssueDate, GrossRate, PrepayMatrix, CouponRate,
Delay)

Arguments Yield Mortgage yield, compounded monthly, in decimal.

Settle Settlement date. A serial date number or date
string. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A serial date number or date string.

IssueDate Issue date. A serial date number or date string.

GrossRate Gross coupon rate (including fees), in decimal.

PrepayMatrix Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values
are padded with NaNs. Each column corresponds
to a mortgage-backed security, and each row
corresponds to each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal.
Default = GrossRate.

Delay (Optional) Delay (in days) between payment from
homeowner and receipt by bondholder. Default = 0
(no delay between payment and receipt.

All inputs (except PrepayMatrix) are number of mortgage-backed
securities (NMBS) by 1 vectors.

Description [ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] =
mbsyield2speed(Yield, Settle, Maturity, IssueDate,
GrossRate, PrepayMatrix, CouponRate, Delay) computes PSA
prepayment speeds implied by pool yields and projected (user-defined)

6-88

mbsyield2speed

prepayment vectors. The calculated PSA speed produces the same
yield, modified duration, or modified convexity, depending upon the
output requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment
speed for the passthrough to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples Calculate the equivalent PSA benchmark prepayment speeds for a
security with these characteristics and prepayment matrix.

Yield = 0.065;

Settle = datenum('1-Jan-2000');

Maturity = datenum('1-Jan-2030');

IssueDate = datenum('1-Jan-2000');

GrossRate = 0.08125;

PrepayMatrix = 0.005*ones(360,1);

CouponRate = 0.075;

Delay = 14;

[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = ...

mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, ...

PrepayMatrix, CouponRate, Delay)

ImpSpdOnYld =

117.7644

ImpSpdOnDur =

116.7436

6-89

mbsyield2speed

ImpSpdOnCnv =

108.3309

See Also mbsyield, mbsprice2speed

References [1] PSA Uniform Practices, SF-49

6-90

psaspeed2default

Purpose Benchmark default

Syntax [ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed)

Arguments DefaultSpeed Annual speed relative to the benchmark. PSA
benchmark = 100.

Description [ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed) computes
the benchmark default on the performing balance of mortgage-backed
securities per PSA benchmark speed.

ADRPSA is the PSA default rate, in decimal (360-by-1).

MDRPSA is the PSA monthly default rate, in decimal (360-by-1).

Examples Given a mortgage-backed security with annual speed set at the PSA
default benchmark, compute the default rates.

DefaultSpeed = 100;

[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed);

See Also psaspeed2rate

6-91

psaspeed2rate

Purpose Single monthly mortality rate given PSA speed

Syntax [CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed)

Arguments PSASpeed Any value > 0 representing the annual speed
relative to the benchmark. PSA benchmark = 100.

Description [CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed) calculates vectors
of PSA prepayments, each containing 360 prepayment elements, to
represent the 360 months in a 30-year mortgage pool.

CPRPSA is the PSA conditional prepayment rate, in decimal [360-by-1].

SMMPSA is the PSA single monthly mortality rate, in decimal [360-by-1].

Examples Given a mortgage-backed security with annual speed set at the PSA
default benchmark, compute the prepayment and mortality rates.

PSASpeed = [100 200];

[CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed);

View a plot of the output.

psaspeed2rate(PSASpeed)

6-92

psaspeed2rate

See Also psaspeed2default

6-93

stepcpncfamounts

Purpose Cash flow amounts and times for bonds and stepped coupons

Syntax [CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Arguments Settle Settlement date. A scalar or vector of serial date
numbers. Settle must be earlier than or equal
to Maturity.

Maturity Maturity date. A scalar or vector of serial date
numbers.

ConvDates Matrix of serial date numbers representing
conversion dates after Settle. Size = number of
instruments by maximum number of conversions.
Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond
in decimal form. Size = number of instruments
by maximum number of conversions + 1. First
column of this matrix contains rates applicable
between Settle and the first conversion date
(date in the first column of ConvDates). Fill
unspecified entries with NaN. See Note below.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2, 3, 4, 6,
and 12. Default = 2.

Basis (Optional) Day-count basis of the instrument. A
vector of integers. 0 = actual/actual (default), 1
= 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4
= 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360
(European), 7 = act/365 (Japanese).

6-94

stepcpncfamounts

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

Face (Optional) Face value of each bond in the
portfolio. Default = 100.

All arguments must be scalars or number of bonds (NUMBONDS) by 1
vectors, except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRates to
reflect the same number of bonds. However, ConvDates has one less
column than CouponRates. This situation is illustrated by

Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description [CFlows, CDates, CTimes] = stepcpncfamounts(Settle,
Maturity, ConvDates, CouponRates, Period, Basis,
EndMonthRule, Face) returns matrices of cash flow amounts, cash flow
dates, and time factors for a portfolio of NUMBONDS stepped coupon bonds.

CFlows is a matrix of cash flow amounts. The first entry in each row
vector is a negative number indicating the accrued interest due at
settlement. If no accrued interest is due, the first column is zero.

CDates is a matrix of cash flow dates in serial date number form. At
least two columns are always present, one for settlement and one for
maturity.

6-95

stepcpncfamounts

CTimes is a matrix of time factors for the SIA semiannual price/yield
conversion.

DiscountFactor = (1 + Yield/2).^(-TFactor)

Time factors are in units of semiannual coupon periods. In computing
time factors we use SIA actual/actual conventions for all time factor
calculations.

Note For bonds with fixed coupons, use cfamounts. MATLAB generates
an error if you use a fixed-coupon bond with stepcpncfamounts.

Examples This example generates stepped cash flows for three different bonds, all
paying interest semiannually. Their life span is about 18-19 years each:

• Bond A has two conversions, but the first one occurs on the settlement
date and immediately expires.

• Bond B has three conversions, with conversion dates exactly on the
coupon dates.

• Bond C has three conversions, with some conversion dates not on the
coupon dates. It has the longest maturity. This case illustrates that
only cash flows for full periods after conversion dates are affected,
as illustrated below.

The following table illustrates the interest rate characteristics of this
bond portfolio.

6-96

stepcpncfamounts

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

2.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97))

8.875% First
Conversion
(14-Jun-97))

5.0%

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

7.5%

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-11)

NaN

Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),...

nan;

datenum('15-Jun-1997'), datenum('15-Jun-2001'),...

datenum('15-Jun-2005');

datenum('14-Jun-1997'), datenum('14-Jun-2001'),...

datenum('14-Jun-2005')];

Maturity = [datenum('15-Jun-2010');

datenum('15-Jun-2010');

datenum('15-Jun-2011')];

CouponRates = [0.075 0.08875 0.0925 nan;

0.075 0.08875 0.0925 0.1;

0.025 0.05 0.0750 0.1];

Basis = 1;

Period = 2;

6-97

stepcpncfamounts

EndMonthRule = 1;

Face = 100;

Call stepcpncfamounts to compute cash flows and timings.

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ...

ConvDates, CouponRates);

Visualize the third bond cash flows (2.5 - 5 - 7.5 - 10).

cfplot(CDates(3,:),CFlows(3,:));
xlabel('Dates in Serial Number Format')
ylabel('Relative Amounts of Cash Flows')
title('CashFlow of 2.5 - 5 - 7.5 - 10 Stepped Coupon Bond')

See Also stepcpnprice, stepcpnyield

6-98

stepcpnprice

Purpose Price bond with stepped coupons

Syntax [Price, AccruedInterest] = stepcpnprice(Yield, Settle, Maturity,
ConvDates, CouponRates, Period, Basis, EndMonthRule, Face)

Arguments

Yield Scalar or vector containing yield to maturity of
instruments.

Settle Settlement date. A scalar or vector of serial date
numbers. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A scalar or vector of serial date
numbers.

ConvDates Matrix of serial date numbers representing
conversion dates after Settle. Size = number of
instruments by maximum number of conversions.
Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond
in decimal form. Size = number of instruments
by maximum number of conversions + 1. First
column of this matrix contains rates applicable
between Settle and the first conversion date
(date in the first column of ConvDates). Fill
unspecified entries with NaN. See Note below.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2, 3, 4, 6, and
12. Default = 2.

Basis (Optional) Day-count basis of the instrument. A
vector of integers. 0 = actual/actual (default), 1
= 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4
= 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360
(European), 7 = act/365 (Japanese).

6-99

stepcpnprice

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

Face (Optional) Face value of each bond in the portfolio.
Default = 100.

All arguments must be scalars or number of bonds (NUMBONDS) by 1
vectors, except for ConvDates and CouponRates.

Note ConvDates has the same number of rows as CouponRate to reflect
the same number of bonds. However, ConvDates has one less column
than CouponRate. This situation is illustrated by

Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description [Price, AccruedInterest] = stepcpnprice(Yield, Settle,
Maturity, ConvDates, CouponRates, Period, Basis,
EndMonthRule, Face) computes the price of bonds with stepped
coupons given the yield to maturity. The function supports any number
of conversion dates.

Price is a NUMBONDS-by-1 vector of clean prices.

AccruedInterest is a NUMBONDS-by-1 vector of accrued interest payable
at settlement dates.

6-100

stepcpnprice

Note For bonds with fixed coupons, use bndprice. You will receive the
error incorrect number of inputs if you use a fixed-coupon bond
with stepcpnprice.

Examples Compute the price and accrued interest due on a portfolio of stepped
coupon bonds having a yield of 7.221%, given three conversion scenarios:

• Bond A has two conversions, the first one falling on the settle date
and immediately expiring.

• Bond B has three conversions, with conversion dates exactly on the
coupon dates.

• Bond C has three conversions, with one or more conversion dates not
on coupon dates. This case illustrates that only cash flows for full
periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this
bond portfolio.

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97)

8.875% First
Conversion
(14-Jun-97)

8.875%

6-101

stepcpnprice

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

9.25%

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-10)

NaN

Yield = 0.07221;

Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),...

nan;

datenum('15-Jun-1997'), datenum('15-Jun-2001'),...

datenum('15-Jun-2005');

datenum('14-Jun-1997'), datenum('14-Jun-2001'),...

datenum('14-Jun-2005')];

Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;

0.075 0.08875 0.0925 0.1;

0.075 0.08875 0.0925 0.1];

Basis = 1;

Period = 2;

EndMonthRule = 1;

Face = 100;

[Price, AccruedInterest] = ...

stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, ...

Period, Basis, EndMonthRule, Face)

Price =

6-102

stepcpnprice

117.3824

113.4339

113.4339

AccruedInterest =

1.1587

0.9792

0.9792

See Also bndprice, cdprice, stepcpncfamounts, stepcpnyield, tbillprice,
zeroprice

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 120 - 123,
on zero-coupon instruments pricing.

6-103

stepcpnyield

Purpose Yield to maturity of bond with stepped coupons

Syntax Yield = stepcpnyield(Price, Settle, Maturity, ConvDates,
CouponRate, Period, Basis, EndMonthRule, Face)

Arguments Price Vector containing price of the bonds.

Settle Settlement date. A vector of serial date numbers.
Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers.

ConvDates Matrix of serial date numbers representing
conversion dates after Settle. Size = number of
instruments by maximum number of conversions.
Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond
in decimal form. Size = number of instruments
by maximum number of conversions + 1. First
column of this matrix contains rates applicable
between Settle and the first conversion date
(date in the first column of ConvDates). Fill
unspecified entries with NaN. See Note below.

Period (Optional) Coupons per year of the bond. A vector
of integers. Allowed values are 0, 1, 2, 3, 4, 6,
and 12. Default = 2.

Basis (Optional) Day-count basis of the instrument. A
vector of integers. 0 = actual/actual (default), 1
= 30/360 (SIA), 2 = actual/360, 3 = actual/365, 4
= 30/360 (PSA), 5 = 30/360 (ISDA), 6 = 30/360
(European), 7 = act/365 (Japanese).

6-104

stepcpnyield

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

Face (Optional) Face value of each bond in the
portfolio. Default = 100.

All arguments must be number of bonds (NUMBONDS) by 1 vectors, except
for ConvDates and CouponRate.

Note ConvDates has the same number of rows as CouponRate to reflect
the same number of bonds. However, ConvDates has one less column
than CouponRate. This situation is illustrated by

Settle---------ConvDate1-----------ConvDate2------------Maturity

Rate1 Rate2 Rate3

Description Yield = stepcpnyield(Price, Settle, Maturity, ConvDates,
CouponRate, Period, Basis, EndMonthRule, Face) computes the
yield to maturity of bonds with stepped coupons given the price. The
function supports any number of conversion dates.

Yield is a NUMBONDS-by-1 vector of yields to maturity in decimal form.

Note For bonds with fixed coupons, use bndyield. You will receive the
error incorrect number of inputs if you use a fixed-coupon bond
with stepcpnyield.

6-105

stepcpnyield

Examples Find the yield to maturity of three stepped coupon bonds of known price,
given three conversion scenarios:

• Bond A has two conversions, the first one falling on the settle date
and immediately expiring.

• Bond B has three conversions, with conversion dates exactly on the
coupon dates.

• Bond C has three conversions, with one or more conversion dates not
on coupon dates. This case illustrates that only cash flows for full
periods after conversion dates are affected, as illustrated below.

The following table illustrates the interest rate characteristics of this
bond portfolio.

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5% Settle
(02-Aug-92)

7.5%

First
Conversion
(02-Aug-92)

8.875% First
Conversion
(15-Jun-97)

8.875% First
Conversion
(14-Jun-97)

8.875%

Second
Conversion
(15-Jun-03)

9.25% Second
Conversion
(15-Jun-01)

9.25% Second
Conversion
(14-Jun-01)

9.25%

6-106

stepcpnyield

Bond A
Dates

Bond A
Rates

Bond B
Dates

Bond B
Rates

Bond C
Dates

Bond C
Rates

Maturity
(15-Jun-10)

NaN Third
Conversion
(15-Jun-05)

10.0% Third
Conversion
(14-Jun-05)

10.0%

Maturity
(15-Jun-10)

NaN Maturity
(15-Jun-10)

NaN

format long

Price = [117.3824; 113.4339; 113.4339];

Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;

datenum('15-Jun-1997'), datenum('15-Jun-2001'), datenum('15-Jun-2005');

datenum('14-Jun-1997'), datenum('14-Jun-2001'), datenum('14-Jun-2005')];

Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;

0.075 0.08875 0.0925 0.1;

0.075 0.08875 0.0925 0.1];

Basis = 1;

Period = 2;

EndMonthRule = 1;

Face = 100;

Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, ...

CouponRates, Period, Basis, EndMonthRule, Face)

Yield =

0.07221440204915

0.07221426780036

0.07221426780036

6-107

stepcpnyield

See Also bndprice, cdprice, stepcpncfamounts, stepcpnprice, tbillprice,
zeroprice

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 120 - 123,
on zero-coupon instruments pricing.

6-108

tbilldisc2yield

Purpose Convert Treasury bill discount to equivalent yield

Syntax [BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

Arguments

Discount Discount rate of Treasury bills in decimal. The
discount rate basis is actual/360.

Settle Settlement date. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date.

Inputs must either be a scalar or a vector of size equal to the number of
Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS.

Description [BEYield MMYield] = tbilldisc2yield(Yield, Settle,
Maturity) converts the discount rate on Treasury bills into their
respective money-market or bond-equivalent yields.

BEYield is an NTBILLS-by-1 vector of bond-equivalent yields. The
bond-equivalent yield basis is actual/365.

MMYield is an NTBILLS-by-1 vector of money-market yields. The
money-market yield basis is actual/360.

Examples Given a Treasury bill with these characteristics, compute the
bond-equivalent and money-market yields.

Discount = 0.0497;

Settle = '01-Oct-02';

Maturity = '31-Mar-03';

[BEYield MMYield] = tbilldisc2yield(Discount, Settle, Maturity)

BEYield =

6-109

tbilldisc2yield

0.0517

MMYield =

0.0510

See Also tbillyield2disc, zeroyield

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

6-110

tbillprice

Purpose Price Treasury bill

Syntax Price = tbillprice(Rate, Settle, Maturity, Type)

Arguments

Rate Bond-equivalent yield, money-market yield, or
discount rate in decimal.

Settle Settlement date. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date.

Type (Optional) Rate type. Determines how to interpret
values entered in Rate. 1 = money market (default).
2 = bond-equivalent. 3 = discount rate.

All arguments must be a scalar or a number of Treasury bills (NTBILLS)
by 1 or 1-by-NTBILLS vector.

Note The bond-equivalent yield basis is actual/365. The money-market
yield basis is actual/360. The discount rate basis is actual/360.

Description Price = tbillprice(Rate, Settle, Maturity, Type) computes the
price of a Treasury bill given a yield or discount rate.

Price is an NTBILLS-by-1 vector of T-bill prices for every $100 face.

Examples Example 1. Given a Treasury bill with these characteristics, compute
the price of the Treasury bill using the bond-equivalent yield as input.

Rate = 0.045;
Settle = '01-Oct-02';

6-111

tbillprice

Maturity = '31-Mar-03';

Type = 2;

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

97.8172

Example 2. Use tbillprice to price a portfolio of Treasury bills.

Rate = [0.045; 0.046];
Settle = {'02-Jan-02'; '01-Mar-02'};
Maturity = {'30-June-02'; '30-June-02'};
Type = [2 3];

Price = tbillprice(Rate, Settle, Maturity, Type)

Price =

97.8408
98.4539

See Also tbillyield, zeroprice

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

6-112

tbillrepo

Purpose Break-even discount of repurchase agreement

Syntax TBEDiscount = tbillrepo(RepoRate, InitialDiscount, PurchaseDate,
SaleDate, Maturity)

Arguments

RepoRate The annualized, 360-day based repurchase rate,
in decimal.

InitialDiscount Discount on the Treasury bill on the day of
purchase, in decimal.

PurchaseDate Date the Treasury bill is purchased.

SaleDate Date the Treasury bill repurchase term is due.

Maturity Treasury bill maturity date.

All arguments must be a scalar or a number of Treasury bills (NTBILLS)
by 1 or a 1-by-NTBILLS vector.

All dates must be in serial date number format.

Description TBEDiscount = tbillrepo(RepoRate, InitialDiscount,
PurchaseDate, SaleDate, Maturity) computes the true break-even
discount of a repurchase agreement. TBEDiscount can be a scalar or
vector of size NTBills-by-1.

Examples Compute the true break-even discount on a Treasury bill repurchase
agreement.

RepoRate = [0.045; 0.0475];
InitialDiscount = 0.0475;
PurchaseDate = '3-Jan-2002';
SaleDate = '3-Feb-2002';
Maturity = '3-Apr-2002';

6-113

tbillrepo

TBEDiscount = tbillrepo(RepoRate, InitialDiscount,...
PurchaseDate, SaleDate, Maturity)

TBEdiscount =

0.0491
0.0478

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

6-114

tbillval01

Purpose Value of one basis point

Syntax [Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Arguments

Settle Settlement date of Treasury bills. Settle must be
earlier than or equal to Maturity.

Maturity Maturity date of Treasury bills.

Description [Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle,
Maturity) calculates the value of one basis point of $100 Treasury bill
face value on the discount rate, money-market yield, or bond-equivalent
yield.

Val01Disc is the value of one basis point of discount rate.

Val01MMY is the value of one basis point of money-market yield.

Val01BEY is the value of one basis point of bond-equivalent yield.

All outputs are of size equal to the number of Treasury bills (NTBILLS)
by 1.

Examples Given a Treasury bill with these settle and maturity dates, compute
the value of one basis point.

Settle = '01-Mar-03';
Maturity = '30-June-03';
[Val01Disc, Val01MMY, Val01BEY] = tbillval01(Settle, Maturity)

Val01Disc =

0.0034

6-115

tbillval01

Val01MMY =

0.0034

Val01BEY =

0.0033

See Also tbilldisc2yield, tbillprice, tbillyield, tbillyield2disc

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp 108 - 115,
on zero coupon instrument pricing.

6-116

tbillyield

Purpose Yield on Treasury bill

Syntax [MMYield, BEYield, Discount] = tbillyield(Price, Settle, Maturity)

Arguments

Price Price of Treasury bills for every $100 face value.

Settle Settlement date. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date.

All arguments must be a scalar or a number of Treasury bills (NTBILLS)
by 1 or 1-by-NTBILLS vector.

Description [MMYield, BEYield, Discount] = tbillyield(Price, Settle,
Maturity) computes the yield of U.S. Treasury bills given Price,
Settle, and Maturity. MMYield is the money-market yields of the
Treasury bills. BEYield is the bond equivalent yields of the Treasury
bills. Discount is the discount rates of the Treasury bills.

All outputs are NTBILLS-by-1 vectors.

Note The money-market yield basis is actual/360. The bond-equivalent
yield basis is actual/365. The discount rate basis is actual/360.

Examples Given a Treasury bill with these characteristics, compute the
money-market and bond-equivalent yields and the discount rate.

Price = 98.75;
Settle = '01-Oct-02';

6-117

tbillyield

Maturity = '31-Mar-03';

[MMYield, BEYield, Discount] = tbillyield(Price, Settle,...
Maturity)

MMYield =

0.0252

BEYield =

0.0255

Discount =

0.0249

See Also tbilldisc2yield, tbillprice, tbillyield2disc, zeroyield

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

6-118

tbillyield2disc

Purpose Convert Treasury bill yield to equivalent discount

Syntax Discount = tbillyield2disc(Yield, Settle, Maturity, Type)

Arguments Yield Yield of Treasury bills in decimal.

Settle Settlement date. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date.

Type (Optional) Yield type. Determines how to interpret
values entered in Yield. 1 = money market (default).
2 = bond-equivalent.

Inputs must either be a scalar or a vector of size equal to the number of
Treasury bills (NTBILLS) by 1 or 1-by-NTBILLS.

Note The money-market yield basis is actual/360. The bond-equivalent
yield basis is actual/365. The discount rate basis is actual/360.

Description Discount = tbillyield2disc(Yield, Settle, Maturity, Type)
converts the yield on a number of Treasury bills into their respective
discount rates.

Discount is a NTBILLS-by-1 vector of T-bill discount rates.

Examples Given a Treasury bill with these characteristics, compute the discount
rate on a money-market basis.

Yield = 0.0497;
Settle = '01-Oct-02';
Maturity = '31-Mar-03';

6-119

tbillyield2disc

Discount = tbillyield2disc(Yield, Settle, Maturity)

Discount =

0.0485

Now recompute the discount on a bond-equivalent basis.

Discount = tbillyield2disc(Yield, Settle, Maturity, 2)

Discount =

0.0478

See Also tbilldisc2yield

References This function adheres to SIA Fixed Income Securities Formulas for
Price, Yield, and Accrued Interest, Volume 1, 3rd edition, pp. 44 - 45 (on
Treasury bills), and Money Market and Bond Calculation by Stigum
and Robinson.

6-120

tfutbyprice

Purpose Future prices of Treasury bonds given spot price

Syntax QtdFutPrice = tfutbyprice(SpotCurve, Price, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation)

Arguments SpotCurve Treasury spot curve. A number of
futures (NFUT) by 3 matrix in the form of
[SpotDates SpotRates Compounding]

Allowed compounding values are -1, 1, 2 (default),
3, 4, and 12.

Price Scalar or vector containing prices of Treasury
bonds or notes per $100 notional. Use bndprice for
theoretical value of bond.

SettleFut Scalar or vector of identical elements containing
settlement date of futures contract.

MatFut Scalar or vector containing maturity dates (or
anticipated delivery dates) of futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Scalar or vector containing underlying bond annual
coupon in decimal.

Maturity Scalar or vector containing underlying bond
maturity.

Interpolation (Optional) Interpolation method. Available methods
are (0) nearest, (1) linear, and (2) cubic. Default = 1.
See interp1 for more information.

Inputs (except SpotCurve) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

6-121

tfutbyprice

Description QtdFutPrice = tfutbyprice(SpotCurve, Price, SettleFut,
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)
computes future prices of Treasury notes and bonds given the spot price.

Examples Determine the future price of two Treasury bonds based upon a spot
rate curve constructed from data for November 14, 2002.

% Constructing spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'), 0;

datenum('05/15/2003'), 0;
datenum('10/31/2004'), 0.02125;
datenum('11/15/2007'), 0.03;
datenum('11/15/2012'), 0.04;
datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve = [CurveDates, ZeroRates];

% Calculating a particular bond's future quoted price
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Price = [114.416; 113.171];
Interpolation = 1;

QtdFutPrice = tfutbyprice(SpotCurve, Price, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice =

6-122

tfutbyprice

113.8129
112.4986

This compares with closing prices of 113.93 and 112.68. The differences
are expected due to the nature of the contract and data that is not
directly comparable.

See Also convfactor, tfutbyyield

6-123

tfutbyyield

Purpose Future prices of Treasury bonds given current yield

Syntax QtdFutPrice = tfutbyyield(SpotCurve, Yield, SettleFut, MatFut,
ConvFactor, CouponRate, Maturity, Interpolation)

Arguments SpotCurve Treasury spot curve. A number of futures (NFUT)
by 3 matrix in the form of [SpotDates SpotRates
Compounding]

Allowed compounding values are -1, 1, 2 (default),
3, 4, and 12.

Yield Scalar or vector containing yield to maturity of
bonds. Use bndyield for theoretical value of bond
yield.

SettleFut Scalar or vector of identical elements containing
settlement date of futures contract.

MatFut Scalar or vector containing maturity dates (or
anticipated delivery dates) of futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Scalar or vector containing underlying bond annual
coupon in decimal.

Maturity Scalar or vector containing underlying bond
maturity.

Interpolation (Optional) Interpolation method. Available methods
are (0) nearest, (1) linear, and (2) cubic. Default = 1.
See interp1 for more information.

Inputs (except SpotCurve) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description QtdFutPrice = tfutbyyield(SpotCurve, Yield, SettleFut,
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

6-124

tfutbyyield

computes future prices of Treasury notes and bonds given current yields
of Treasury bonds/notes.

Examples Determine the future price of two Treasury bonds based upon a spot
rate curve constructed from data for November 14, 2002.

% Constructing spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'), 0;

datenum('05/15/2003'), 0;
datenum('10/31/2004'), 0.02125;
datenum('11/15/2007'), 0.03;
datenum('11/15/2012'), 0.04;
datenum('02/15/2031'), 0.05375];

Yields = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve = [CurveDates, ZeroRates];

% Calculating a particular bond's future quoted price
RefDate = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Yield = [0.03576; 0.03773];
Interpolation = 1;

QtdFutPrice = tfutbyyield(SpotCurve, Yield, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice =

6-125

tfutbyyield

113.8136
112.4991

This compares with closing prices of 113.93 and 112.68. The differences
are expected because of the nature of the contract and data that are not
directly comparable.

See Also convfactor, tfutbyprice

6-126

tfutimprepo

Purpose Implied simple annual repurchase rate to prevent arbitrage

Syntax ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, Settle,
MatFut, ConvFactor, CouponRate, Maturity)

Arguments

ReinvestData Number of futures (NFUT) by 2 matrix
of rates and bases for the reinvestment
of intervening coupons in the form of
[ReinvestRate ReinvestBasis].
ReinvestRate is the simple reinvestment rate,
in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.

Price Current bond price per $100 notional.

QtdFutPrice Quoted bond futures price per $100 notional.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of
futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.

Inputs (except ReinvestData) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice,
Settle, MatFut, ConvFactor, CouponRate, Maturity) computes
the implied repo rate that prevents arbitrage of Treasury bond futures,
given the clean price at the settlement and delivery dates.

6-127

tfutimprepo

ImpliedRepo is the implied annual repo rate, in decimal, with an
actual/360 basis.

Examples Compute the implied repo rate given the following set of data.

ReinvestData = [0.018 3];

Price = [114.4160; 113.1710];

QtdFutPrice = [114.1201; 113.7090];

Settle = datenum('11/15/2002');

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

ConvFactor = [1; 0.9854];

CouponRate = [0.06; 0.0575];

Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...

Settle, MatFut, ConvFactor, CouponRate, Maturity)

ImpliedRepo =

0.0200

0.0200

See Also tfutpricebyrepo, tfutyieldbyrepo

6-128

tfutpricebyrepo

Purpose Theoretical futures bond price

Syntax [QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ReinvestData,
Price, Settle, MatFut, ConvFactor, CouponRate, Maturity)

Arguments RepoData Number of futures (NFUT) by 2 matrix of simple
term repo/funding rates in decimal and their bases
in the form of [RepoRate RepoBasis].
Specify RepoBasis as 2 = actual/360 or
3 = actual/365.

ReinvestData Number of futures (NFUT) by 2 matrix
of rates and bases for the reinvestment
of intervening coupons in the form of
[ReinvestRate ReinvestBasis].
ReinvestRate is the simple reinvestment rate,
in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.

Price Quoted clean prices of Treasury bonds per $100
notional at Settle.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of
futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.

Inputs (except RepoData and ReinvestData) must either be a scalar or
a vector of size equal to the number of Treasury futures (NFUT) by 1 or
1-by-NFUT.

6-129

tfutpricebyrepo

Description [QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData,
ReinvestData, Price, Settle, MatFut, ConvFactor,
CouponRate, Maturity) computes the theoretical futures bond price
given the settlement price, the repo/funding rates, and the reinvestment
rate.

QtdFutPrice is the quoted futures price, per $100 notional.

AccrInt is the accrued interest due at the delivery date, per $100
notional.

Examples Compute the quoted futures price and accrued interest due on the
target delivery date, given the following data.

RepoData = [0.020 2];

ReinvestData = [0.018 3];

Price = [114.416; 113.171];

Settle = datenum('11/15/2002');

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

ConvFactor = [1 ; 0.9854];

CouponRate = [0.06;0.0575];

Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ...

ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, ...

Maturity)

QtdFutPrice =

114.1201

113.7090

AccrInt =

1.9891

0.4448

See Also tfutimprepo, tfutyieldbyrepo

6-130

tfutyieldbyrepo

Purpose Theoretical futures bond yield

Syntax FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield, Settle,
MatFut, ConvFactor, CouponRate, Maturity)

Arguments RepoData Number of futures (NFUT) by 2 matrix of simple term
repo/funding rates in decimal and their bases in the
form of [RepoRate RepoBasis].
Specify RepoBasis as 2 = actual/360 or
3 = actual/365.

ReinvestData Number of futures (NFUT) by 2 matrix
of rates and bases for the reinvestment
of intervening coupons in the form of
[ReinvestRate ReinvestBasis].
ReinvestRate is the simple reinvestment rate,
in decimal. Specify ReinvestBasis as 0 = not
reinvested, 2 = actual/360, or 3 = actual/365.

Yield Yield to maturity of Treasury bonds per $100
notional at Settle.

Settle Settlement/valuation date of futures contract.

MatFut Maturity date (or anticipated delivery dates) of
futures contract.

ConvFactor Conversion factor. See convfactor.

CouponRate Underlying bond annual coupon, in decimal.

Maturity Underlying bond maturity date.

Inputs (except RepoData and ReinvestData) must either be a scalar or
a vector of size equal to the number of Treasury futures (NFUT) by 1 or
1-by-NFUT.

6-131

tfutyieldbyrepo

Description FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,
Settle, MatFut, ConvFactor, CouponRate, Maturity) computes
the theoretical futures bond yield given the settlement yield, the
repo/funding rate, and the reinvestment rate.

FwdYield is the forward yield to maturity, in decimal, compounded
semiannually.

Examples Compute the quoted futures bond yield, given the following data:

RepoData = [0.020 2];

ReinvestData = [0.018 3];

Yield = [0.0215; 0.0257];

Settle = datenum('11/15/2002');

MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];

ConvFactor = [1; 0.9854];

CouponRate = [0.06; 0.0575];

Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];

FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,...

Settle, MatFut, ConvFactor, CouponRate, Maturity)

FwdYield =

0.0221

0.0282

See Also tfutimprepo, tfutpricebyrepo

6-132

zeroprice

Purpose Price zero-coupon instruments given yield

Syntax Price = zeroprice(Yield, Settle, Maturity, Period, Basis,
EndMonthRule)

Arguments Yield Scalar or vector containing yield to maturity of
instruments.

Settle Settlement date. A vector of serial date numbers
or date strings. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date. A vector of serial date numbers or
date strings.

Period (Optional) Scalar or vector specifying number of
quasi-coupons per year. Default = 2.

Basis (Optional) Day-count basis of the bond. A
vector of integers. 0 = actual/actual (default),
1 = 30/360 (SIA), 2 = actual/360, 3 = actual/365,
4 = 30/360 (PSA), 5 = 30/360 (ISDA),
6 = 30/360 (European), 7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0 =
ignore rule, meaning that a bond’s coupon payment
date is always the same numerical day of the
month. 1 = set rule on (default), meaning that a
bond’s coupon payment date is always the last
actual day of the month.

Description Price = zeroprice(Yield, Settle, Maturity, Period, Basis,
EndMonthRule) calculates the prices for a portfolio of general short and
long term zero-coupon instruments given the yield of the instruments.

6-133

zeroprice

Price is a column vector containing a price for each zero-coupon
instrument.

When there is less than one quasi-coupon, the function uses a simple
yield based upon "Period times Number of Days in quasi coupon period"
day-year. The default period is 2 and the default number of days is 180,
which makes the user-supplied yield a simple yield on a 360-day year.

For longer term computations (more than one quasi-coupon) you should
use bond equivalent yield based upon present value (or compounding).

Formulas To compute the price when there is one or zero quasi-coupon periods to
redemption, zeroprice uses the formula

Quasi-coupon periods are the coupon periods that would exist if the
bond were paying interest at a rate other than zero.

When there is more than one quasi-coupon period to the redemption
date, zeroprice uses the formula

The elements of the equations are defined as follows.

Variable Definition

DSC Number of days from settlement date to next quasi-coupon
date as if the security paid periodic interest.

DSR Number of days from settlement date to the redemption
date (call date, put date, etc.).

E Number of days in quasi-coupon period.

6-134

zeroprice

Variable Definition

M Number of quasi-coupon periods per year (standard for
the particular security involved).

Nq Number of quasi-coupon periods between settlement date
and redemption date. If this number contains a fractional
part, raise it to the next whole number.

Price Dollar price per $100 par value.

RV Redemption value.

Y Annual yield (decimal) when held to redemption.

Examples Example 1. Compute the price of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Period = 2;
Basis = 0;
Yield = 0.04;

Price = zeroprice(Yield, Settle, Maturity, Period, Basis)

Price =

98.6066

Example 2. Compute the prices of a portfolio of two zero-coupon
instruments, one short term and the other long term.

Settle = '24-Jun-1993';
Maturity = ['01-Nov-1993'; '15-Jan-2024'];
Basis = [0; 1];
Yield = [0.04; 0.1];

Price = zeroprice(Yield, Settle, Maturity, [], Basis)

6-135

zeroprice

Price =

98.6066
5.0697

See Also bndprice, cdprice, tbillprice, zeroyield

References [1] Mayle, Jan. Standard Securities Calculation Methods. New York:
Securities Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN
1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

6-136

zeroyield

Purpose Yield of zero-coupon instruments given price

Syntax Yield = zeroyield(Price, Settle, Maturity, Period, Basis,
EndMonthRule)

Arguments Price Scalar or vector containing prices of instruments.

Settle Settlement date. A vector of serial date numbers or
date strings. Settle must be earlier than or equal
to Maturity.

Maturity Maturity date. A vector of serial date numbers or
date strings.

Period (Optional) Scalar or vector specifying number of
quasi-coupons per year. Default = 2.

Basis (Optional) Day-count basis of the bond. A vector
of integers. 0 = actual/actual (default), 1 = 30/360
(SIA), 2 = actual/360, 3 = actual/365, 4 = 30/360
(PSA), 5 = 30/360 (ISDA), 6 = 30/360 (European),
7 = act/365 (Japanese).

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month date
for a month having 30 or fewer days. 0 = ignore
rule, meaning that a bond’s coupon payment date is
always the same numerical day of the month. 1 =
set rule on (default), meaning that a bond’s coupon
payment date is always the last actual day of the
month.

Description Yield = zeroyield(Price, Settle, Maturity, Period, Basis,
EndMonthRule) calculates the bond-equivalent yield for a portfolio of
general short and long term zero-coupon instruments given the price of
the instruments. Yield is a column vector containing a yield for each
zero-coupon instrument.

6-137

zeroyield

When the maturity date is fewer than 182 days away and the basis is
actual/365, the function uses a simple-interest algorithm. If maturity is
more than 182 days away, the function uses present value calculations.

When the basis is actual/360, the simple interest algorithm gives the
money-market yield for short (one to six months to maturity) Treasury
bills.

The present value algorithm always gives the bond equivalent yield of
the zero-coupon instrument. The algorithm is equivalent to calling
bndyield with the zero-coupon information within one basis point.

Formulas To compute the yield when there is zero or one quasi-coupon periods to
redemption, zeroyield uses the formula

Quasi-coupon periods are the coupon periods which would exist if the
bond was paying interest at a rate other than zero. The first term
calculates the yield on invested dollars. The second term converts this
yield to a per annum basis.

When there is more than one quasi-coupon period to the redemption
date, zeroyield uses the formula

The elements of the equations are defined as follows.

Variable Definition

DSC Number of days from settlement date to next quasi-coupon
date as if the security paid periodic interest.

6-138

zeroyield

Variable Definition

DSR Number of days from settlement date to redemption date
(call date, put date, etc.).

E Number of days in quasi-coupon period.

M Number of quasi-coupon periods per year (standard for the
particular security involved).

Nq Number of quasi-coupon periods between settlement date
and redemption date. If this number contains a fractional
part, raise it to the next whole number.

P Dollar price per $100 par value.

RV Redemption value.

Yield Annual yield (decimal) when held to redemption.

Examples Example 1. Compute the yield of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 0;
Price = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

0.1490

Example 2. Recompute the yield of the same instrument using a
different day-count basis.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis = 1;
Price = 95;

6-139

zeroyield

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

0.1492

Example 3. Compute the yield of a long-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '15-Jan-2024';
Basis = 0;
Price = 9;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield =

0.0804

See Also bndyield, cdyield, tbillyield, zeroprice

References [1] Mayle, Jan. Standard Securities Calculation Methods. New York:
Securities Industry Association, Inc. Vol. 1, 3rd ed., 1993, ISBN
1-882936-01-9. Vol. 2, 1994, ISBN 1-882936-02-7.

6-140

A

Examples

Use this list to find examples in the documentation.

A Examples

Treasury Bills
“Treasury Bill Repurchase Agreements” on page 3-3
“Treasury Bill Yields” on page 3-5

Using Zero-Coupon Bonds
“Pricing Treasury Notes” on page 3-7
“Pricing Corporate Bonds” on page 3-9

Stepped-Coupon Bonds
“Cash Flows from Stepped-Coupon Bonds” on page 3-11
“Price and Yield of Stepped-Coupon Bonds” on page 3-12

Pricing and Hedging
“Swap Pricing Example” on page 4-3

Treasury Bond Futures
“Theoretical Prices” on page 4-12
“Implied Repo” on page 4-15

A-2

Glossary

Glossary

American option
An option that can be exercised any time until its expiration date.
Contrast with European option.

Amortization
Reduction in value of an asset over some period for accounting purposes.
Generally used with intangible assets. Depreciation is the term used
with fixed or tangible assets.

Annuity
A series of payments over a period of time. The payments are usually
in equal amounts and usually at regular intervals such as quarterly,
semiannually, or annually.

Arbitrage
The purchase of securities on one market for immediate resale on
another market in order to profit from a price or currency discrepancy.

Basis point
One hundredth of one percentage point, or 0.0001.

Beta
The price volatility of a financial instrument relative to the price
volatility of a market or index as a whole. Beta is most commonly
used with respect to equities. A high-beta instrument is riskier than a
low-beta instrument.

Binomial model
A method of pricing options or other equity derivatives in which
the probability over time of each possible price follows a binomial
distribution. The basic assumption is that prices can move to only two
values (one higher and one lower) over any short time period.

Black-Scholes model
The first complete mathematical model for pricing options, developed
by Fischer Black and Myron Scholes. It examines market price, strike
price, volatility, time to expiration, and interest rates. It is limited to
only certain kinds of options.

Glossary-1

Glossary

Bollinger band chart
A financial chart that plots actual asset data along with three other
bands of data: the upper band is two standard deviations above
a user-specified moving average; the lower band is two standard
deviations below that moving average; and the middle band is the
moving average itself.

Bootstrapping, bootstrap method
An arithmetic method for backing an implied zero curve out of the par
yield curve.

Building a binomial tree
For a binomial option model: plotting the two possible short-term
price-changes values, and then the subsequent two values each, and
then the subsequent two values each, and so on over time, is known as
“building a binomial tree.” See Binomial model on page Glossary-1.

Call
a. An option to buy a certain quantity of a stock or commodity for a
specified price within a specified time. See Put on page Glossary-9.
b. A demand to submit bonds to the issuer for redemption before the
maturity date. c. A demand for payment of a debt. d. A demand for
payment due on stock bought on margin.

Callable bond
A bond that allows the issuer to buy back the bond at a predetermined
price at specified future dates. The bond contains an embedded call
option; i.e., the holder has sold a call option to the issuer. See Puttable
bond on page Glossary-9.

Cap
Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain level.

Caplet
A cap that is guaranteed for one particular date.

Cash flow
Cash received and paid over time.

Glossary-2

Glossary

Cheapest to deliver
Cheapest to deliver represents the least expensive underlying product
that can be delivered upon expiry to satisfy the requirements of a
derivative contract.

Collar
Interest-rate option that guarantees that the rate on a floating-rate
loan will not exceed a certain upper level nor fall below a lower level. It
is designed to protect an investor against wide fluctuations in interest
rates.

Conditional prepayment rate (CPR)
The fraction of mortgage principal that had not prepaid at the beginning
of any year but does prepay during the year. CPR is an annualization of
the single monthly mortality rate. See also Single monthly mortality
(SMM) on page Glossary-10.

Conversion factor
The rate used to adjust differences in bond values for delivery on U. S.
Treasury bond futures contracts.

Convexity
A measure of the rate of change in duration; measured in time. The
greater the rate of change, the more the duration changes as yield
changes.

Correlation
The simultaneous change in value of two random numeric variables.

Correlation coefficient
A statistic in which the covariance is scaled to a value between
minus one (perfect negative correlation) and plus one (perfect positive
correlation).

Coupon
Detachable certificate attached to a bond that shows the amount of
interest payable at regular intervals, usually semiannually. Originally
coupons were actually attached to the bonds and had to be cut off or
"clipped" to redeem them and receive the interest payment.

Glossary-3

Glossary

Coupon dates
The dates when the coupons are paid. Typically a bond pays coupons
annually or semiannually.

Coupon rate
The nominal interest rate that the issuer promises to pay the buyer of
a bond.

Covariance
A measure of the degree to which returns on two assets move in tandem.
A positive covariance means that asset returns move together; a
negative covariance means they vary inversely.

Delta
The rate of change of the price of a derivative security relative to the
price of the underlying asset; i.e., the first derivative of the curve that
relates the price of the derivative to the price of the underlying security.

Depreciation
Reduction in value of fixed or tangible assets over some period for
accounting purposes. See Amortization on page Glossary-1.

Derivative
A financial instrument that is based on some underlying asset. For
example, an option is a derivative instrument based on the right to buy
or sell an underlying instrument.

Discount curve
The curve of discount rates vs. maturity dates for bonds.

Duration
The expected life of a fixed-income security considering its coupon yield,
interest payments, maturity, and call features. As market interest rates
rise, the duration of a financial instrument decreases. See Macaulay
duration on page Glossary-7.

Efficient frontier
A graph representing a set of portfolios that maximizes expected
return at each level of portfolio risk. See Markowitz model on page
Glossary-7.

Glossary-4

Glossary

Elasticity
See Lambda on page Glossary-6.

Eurodollar
U.S. dollar-denominated deposits at foreign banks or foreign branches
of American banks.

European option
An option that can be exercised only on its expiration date. Contrast
with American option.

Exercise price
The price set for buying an asset (call) or selling an asset (put). The
strike price.

Face value
The maturity value of a security. Also known as par value, principal
value, or redemption value.

Fixed-income security
A security that pays a specified cash flow over a specific period. Bonds
are typical fixed-income securities.

Floor
Interest-rate option that guarantees that the rate on a floating-rate loan
will not fall below a certain level.

Forward curve
The curve of forward interest rates vs. maturity dates for bonds.

Forward rate
The future interest rate of a bond inferred from the term structure,
especially from the yield curve of zero-coupon bonds, calculated from the
growth factor of an investment in a zero held until maturity.

Forward rate agreement (FRA)
A forward contract that determines an interest rate to be paid or
received on an obligation beginning at a start date sometime in the
future.

Glossary-5

Glossary

Future value
The value that a sum of money (the present value) earning compound
interest will have in the future.

Gamma
The rate of change of delta for a derivative security relative to the price
of the underlying asset; i.e., the second derivative of the option price
relative to the security price.

Greeks
Collectively, "greeks" refer to the financial measures delta, gamma,
lambda, rho, theta, and vega, which are sensitivity measures used in
evaluating derivatives.

Hedge
A securities transaction that reduces or offsets the risk on an existing
investment position.

Implied volatility
For an option, the variance that makes a call option price equal to the
market price. Given the option price, strike price, and other factors, the
Black-Scholes model computes implied volatility.

Internal rate of return
a. The average annual yield earned by an investment during the period
held. b. The effective rate of interest on a loan. c. The discount rate
in discounted cash flow analysis. d. The rate that adjusts the value of
future cash receipts earned by an investment so that interest earned
equals the original cost. See Yield to maturity on page Glossary-13.

Issue date
The date a security is first offered for sale. That date usually determines
when interest payments, known as coupons, are made.

Lambda
The percentage change in the price of an option relative to a 1% change
in the price of the underlying security. Also known as Elasticity.

Glossary-6

Glossary

LIBOR
Abbreviation for London Interbank Offered Rate, an interest rate set
daily in London. Applies to loans among large international banks.

Long position
Outright ownership of a security or financial instrument. The owner
expects the price to rise in order to make a profit on some future sale.

Long rate
The yield on a zero-coupon Treasury bond.

Macaulay duration
A widely used measure of price sensitivity to yield changes developed by
Frederick Macaulay in 1938. It is measured in years and is a weighted
average-time-to-maturity of an instrument. The Macaulay duration
of an income stream, such as a coupon bond, measures how long, on
average, the owner waits before receiving a payment. It is the weighted
average of the times payments are made, with the weights at time T
equal to the present value of the money received at time T.

Markowitz model
A model for selecting an optimum investment portfolio, devised by H.
M. Markowitz. It uses a discrete-time, continuous-outcome approach
for modeling investment problems, often called the mean-variance
paradigm. See Efficient frontier on page Glossary-4.

Maturity date
The date when the issuer returns the final face value of a bond to the
buyer.

Mean
a. A number that typifies a set of numbers, such as a geometric mean or
an arithmetic mean. b. The average value of a set of numbers.

Modified duration
The Macaulay duration discounted by the per-period interest rate; i.e.,
divided by (1+rate/frequency).

Glossary-7

Glossary

Monte-Carlo simulation
A mathematical modeling process. For a model that has several
parameters with statistical properties, pick a set of random values for
the parameters and run a simulation. Then pick another set of values,
and run it again. Run it many times (often 10,000 times) and build up a
statistical distribution of outcomes of the simulation. This distribution
of outcomes is then used to answer whatever question you are asking.

Moving average
A price average that is adjusted by adding other parametrically
determined prices over some time period.

Moving-averages chart
A financial chart that plots leading and lagging moving averages for
prices or values of an asset.

Normal (bell-shaped) distribution
In statistics, a theoretical frequency distribution for a set of variable
data, usually represented by a bell-shaped curve symmetrical about
the mean.

Notional
The nominal value used to calculate swap payments.

Odd first or last period
Fixed-income securities may be purchased on dates that do not coincide
with coupon or payment dates. The length of the first and last periods
may differ from the regular period between coupons, and thus the bond
owner is not entitled to the full value of the coupon for that period.
Instead, the coupon is prorated according to how long the bond is held
during that period.

Off-the-run
All Treasury bonds and notes issued before the most recently issued
bond or note of a particular maturity. These are the opposite of
on-the-run treasuries.

On-the-run
The most recently issued U.S. Treasury bond or note of a particular
maturity. These are the opposite of off-the-run treasuries.

Glossary-8

Glossary

Option
A right to buy or sell specific securities or commodities at a stated price
(exercise or strike price) within a specified time. An option is a type of
derivative.

Option-adjusted spread
A yield spread that is not directly attributable to the characteristics
of a fixed income security.

Passthrough
A type of mortgage-backed security in which the interest and principal
payments on the underlying mortgages "pass through" to the holders,
pro rata, minus a servicing fee.

Par value
The maturity or face value of a security or other financial instrument.

Par yield curve
The yield curve of bonds selling at par, or face, value.

Present value
Today’s value of an investment that yields some future value when
invested to earn compounded interest at a known interest rate; i.e.,
the future value at a known period in time discounted by the interest
rate over that time period.

Principal value
See Par value on page Glossary-9.

Purchase price
Price actually paid for a security. Typically the purchase price of a bond
is not the same as the redemption value.

Put
An option to sell a stipulated amount of stock or securities within a
specified time and at a fixed exercise price. See Call on page Glossary-2.

Puttable bond
A bond that allows the holder to redeem the bond at a predetermined
price at specified future dates. The bond contains an embedded put

Glossary-9

Glossary

option; i.e., the holder has bought a put option. See Callable bond
on page Glossary-2.

Redemption value
See Par value on page Glossary-9.

Regression analysis
Statistical analysis techniques that quantify the relationship between
two or more variables. The intent is quantitative prediction or
forecasting, particularly using a small population to forecast the
behavior of a large population.

Rho
The rate of change in a derivative’s price relative to the underlying
security’s risk-free interest rate.

Sensitivity
The "what if" relationship between variables; the degree to which
changes in one variable cause changes in another variable. A specific
synonym is volatility.

Settlement date
The date when money first changes hands; i.e., when a buyer actually
pays for a security. It need not coincide with the issue date.

Short rate
The annualized one-period interest rate.

Short sale, short position
The sale of a security or financial instrument not owned, in anticipation
of a price decline and making a profit by purchasing the instrument
later at a lower price, and then delivering the instrument to complete
the sale. See Long position on page Glossary-7.

Single monthly mortality (SMM)
The fraction of mortgage principal that had not prepaid at the
beginning of a given month but does prepay during the month. See also
Conditional prepayment rate (CPR) on page Glossary-3.

Glossary-10

Glossary

Spot curve, spot yield curve
See Zero curve, zero-coupon yield curve on page Glossary-13.

Spot rate
The current interest rate appropriate for discounting a cash flow of
some given maturity.

Spread
For options, a combination of call or put options on the same stock with
differing exercise prices or maturity dates.

Standard deviation
A measure of the variation in a distribution, equal to the square root of
the arithmetic mean of the squares of the deviations from the arithmetic
mean; the square root of the variance.

Stochastic
Involving or containing a random variable or variables; involving
chance or probability.

Straddle
A strategy used in trading options or futures. It involves simultaneously
purchasing put and call options with the same exercise price and
expiration date, and it is most profitable when the price of the
underlying security is very volatile.

Strike
Exercise a put or call option.

Strike price
See Exercise price on page Glossary-5.

Swap
A contract between two parties to exchange cash flows in the future
according to some formula.

Swap option
A swap option; an option on an interest-rate swap. The option gives
the holder the right to enter into a contracted interest-rate swap at a
specified future date. See Swap on page Glossary-11.

Glossary-11

Glossary

Tenor
Life of a swap.

Term structure
The relationship between the yields on fixed-interest securities and
their maturity dates. Expectation of changes in interest rates affects
term structure, as do liquidity preferences and hedging pressure. A
yield curve is one representation in the term structure.

Theta
The rate of change in the price of a derivative security relative to time.
Theta is usually very small or negative since the value of an option
tends to drop as it approaches maturity.

Treasury bill
Short-term U.S. Government security issued at a discount from the face
value and paying the face value at maturity.

Treasury bond
Long-term debt obligation of the U.S. Government that makes coupon
payments semiannually and is sold at or near par value in $1000
denominations or higher. Face value is paid at maturity.

Variance
The dispersion of a variable. The square of the standard deviation.

Vega
The rate of change in the price of a derivative security relative to the
volatility of the underlying security. When vega is large the security is
sensitive to small changes in volatility.

Volatility
a. Another general term for sensitivity. b. The standard deviation of
the annualized continuously compounded rate of return of an asset. c.
A measure of uncertainty or risk.

Yield
a. Measure of return on an investment, stated as a percentage of
price. Yield can be computed by dividing return by purchase price,
current market value, or other measure of value. b. Income from a bond

Glossary-12

Glossary

expressed as an annualized percentage rate. c. The nominal annual
interest rate that gives a future value of the purchase price equal to
the redemption value of the security. Any coupon payments determine
part of that yield.

Yield curve
Graph of yields (vertical axis) of a particular type of security versus the
time to maturity (horizontal axis). This curve usually slopes upward,
indicating that investors usually expect to receive a premium for
securities that have a longer time to maturity. The benchmark yield
curve is for U.S. Treasury securities with maturities ranging from three
months to 30 years. See Term structure on page Glossary-12.

Yield to maturity
A measure of the average rate of return that will be earned on a bond
if held to maturity.

Zero curve, zero-coupon yield curve
A yield curve for zero-coupon bonds; zero rates versus maturity dates.
Since the maturity and duration (Macaulay duration) are identical for
zeros, the zero curve is a pure depiction of supply/demand conditions for
loanable funds across a continuum of durations and maturities. Also
known as spot curve or spot yield curve.

Zero-coupon bond, or Zero
A bond that, instead of carrying a coupon, is sold at a discount from its
face value, pays no interest during its life, and pays the principal only
at maturity.

Glossary-13

Index

IndexA
actual/360 3-2

B
bkcall 6-2
bkcaplet 6-7
bkfloorlet 6-9
bkput 6-11
bond equivalent yield 6-82
break-even discount rate 3-3

C
cbprice 6-17
cdai 6-22
cdprice 6-24
cdyield 6-26
cfamounts 6-28
cheapest to deliver (CTD) 4-15
conditional prepayment rate (CPR) 2-4
convertible bond 4-10
convfactor 6-33
coupon bond functions 3-7
CPR

conditional payment rate 2-4
CTD

cheapest to deliver 4-15

D
discount security 3-2
duration

modified 2-8
DV01 4-16

E
effective duration 2-10

defined mathematically 2-10

F
forward rate agreement 6-37

defined 6-41

I
implied repo 4-15

L
liborduration 6-35
liborfloat2fixed 6-37
liborprice 6-41

M
mbscfamounts 6-44
mbsconvp 6-47
mbsconvy 6-49
mbsdurp 6-51
mbsdury 6-54
mbsnoprepay 6-57
mbsoas2price 6-59
mbsoas2yield 6-63
mbspassthrough 6-67
mbsprice 6-69
mbsprice2oas 6-72
mbsprice2speed 6-76
mbswal 6-79
mbsyield 6-81
mbsyield2oas 6-84
mbsyield2speed 6-88
modified duration 2-8
mortage-backed securities 2-2
mortgage yield 6-82

O
OAS

option-adjusted spread 2-9
off-the-run 3-14

Index-1

Index

on-the-run 3-14
option-adjusted spread

defined 2-10
option-adjusted spread (OAS) 2-9

effect on pool pricing 2-9

P
passthrough certificate 2-2
prepayment 2-3
prepayment summary 2-16
psaspeed2default 6-91
psaspeed2rate 6-92
Public Securities Association (PSA) 2-3

Q
quasi-coupon periods

zeroprice 6-134
zeroyield 6-138

S
seasoned prepayment vector 2-13
single monthly mortality (SMM) rate 2-4
SMM

single monthly mortality rate 2-4
spread 3-14

term structure of 3-14
stepcpncfamounts 6-94

stepcpnprice 6-99
stepcpnyield 6-104

T
tbilldisc2yield 6-109
tbillprice 6-111
tbillrepo 6-113
tbillval01 6-115
tbillyield 6-117
tbillyield2disc 6-119
tenor 6-35
tfutbyprice 6-121
tfutbyyield 6-124
tfutimprepo 6-127
tfutpricebyrepo 6-129
time factor 6-30
Treasury bills

defined 3-2
Treasury bonds 3-2
Treasury notes 3-2

Z
zero-coupon bond

defined 3-7
quality of measurement 3-7

zeroprice 6-133
zeroyield 6-137

Index-2

	toc
	Getting Started
	What Is Fixed-Income Toolbox?
	Using Mortgage-Backed Securities
	Using Debt Instruments
	Using Derivative Securities

	Mortgage-Backed Securities
	What Are Mortgage-Backed Securities?
	Using Fixed-Rate Mortgage Pool Functions
	Inputs to Functions
	Generating Prepayment Vectors
	Mortgage Prepayments
	Risk Measurement
	Mortgage Pool Valuation
	Calculating OAS
	Calculating Effective Duration
	Calculating Market Price

	Computing Option-Adjusted Spread (OAS)
	Prepayments with Fewer Than 360 Months Remaining
	Pools with Different Numbers of Coupons Remaining
	Summary of Prepayment Data Vector Representation

	Debt Instruments
	Treasury Bills Defined
	Computing Treasury Bill Price and Yield
	Treasury Bill Repurchase Agreements
	Treasury Bill Yields

	Using Zero-Coupon Bonds
	Measuring Zero-Coupon Bond Function Quality
	Pricing Treasury Notes
	Pricing Corporate Bonds

	Stepped-Coupon Bonds
	Cash Flows from Stepped-Coupon Bonds
	Price and Yield of Stepped-Coupon Bonds

	Term Structure Calculations
	Computing Spot and Forward Curves
	Computing Spreads
	Noise in Curve Computations

	Derivative Securities
	Pricing and Hedging
	Swap Pricing Assumptions
	Assumptions on Floating-Rate Input
	Assumptions on Fixed-Rate Output

	Swap Pricing Example
	Portfolio Hedging

	Convertible Bond Valuation
	Treasury Bond Futures
	Theoretical Prices
	Implied Repo
	Hedge Parameters

	Functions — By Category
	Cash Flows
	Certificates of Deposit
	Convertible Bonds
	Derivative Securities
	Mortgage-Backed Securities
	Option Adjusted Spread Computations
	Stepped Coupon Bonds
	Treasury Bills
	Treasury Bond Futures
	Zero Coupon Instruments

	Functions — Alphabetical List
	Examples
	Treasury Bills
	Using Zero-Coupon Bonds
	Stepped-Coupon Bonds
	Pricing and Hedging
	Treasury Bond Futures

	Glossary
	Index

	tables
	Treasury Bill Functions
	Cash Flows from Repurchase Agreement
	Eurodollar Data on Friday, October 11, 2002
	Calculated and Market Average Data of Swap Rates on Friday, Octo

